Concurrent Data Processing in Elixir


Book Description

Learn different ways of writing concurrent code in Elixir and increase your application's performance, without sacrificing scalability or fault-tolerance. Most projects benefit from running background tasks and processing data concurrently, but the world of OTP and various libraries can be challenging. Which Supervisor and what strategy to use? What about GenServer? Maybe you need back-pressure, but is GenStage, Flow, or Broadway a better choice? You will learn everything you need to know to answer these questions, start building highly concurrent applications in no time, and write code that's not only fast, but also resilient to errors and easy to scale. Whether you are building a high-frequency stock trading application or a consumer web app, you need to know how to leverage concurrency to build applications that are fast and efficient. Elixir and the OTP offer a range of powerful tools, and this guide will show you how to choose the best tool for each job, and use it effectively to quickly start building highly concurrent applications. Learn about Tasks, supervision trees, and the different types of Supervisors available to you. Understand why processes and process linking are the building blocks of concurrency in Elixir. Get comfortable with the OTP and use the GenServer behaviour to maintain process state for long-running jobs. Easily scale the number of running processes using the Registry. Handle large volumes of data and traffic spikes with GenStage, using back-pressure to your advantage. Create your first multi-stage data processing pipeline using producer, consumer, and producer-consumer stages. Process large collections with Flow, using MapReduce and more in parallel. Thanks to Broadway, you will see how easy it is to integrate with popular message broker systems, or even existing GenStage producers. Start building the high-performance and fault-tolerant applications Elixir is famous for today. What You Need: You'll need Elixir 1.9+ and Erlang/OTP 22+ installed on a Mac OS X, Linux, or Windows machine.




Concurrent Data Processing in Elixir


Book Description

Learn different ways of writing concurrent code in Elixir and increase your application's performance, without sacrificing scalability or fault-tolerance. Most projects benefit from running background tasks and processing data concurrently, but the world of OTP and various libraries can be challenging. Which Supervisor and what strategy to use? What about GenServer? Maybe you need back-pressure, but is GenStage, Flow, or Broadway a better choice? You will learn everything you need to know to answer these questions, start building highly concurrent applications in no time, and write code that's not only fast, but also resilient to errors and easy to scale. Whether you are building a high-frequency stock trading application or a consumer web app, you need to know how to leverage concurrency to build applications that are fast and efficient. Elixir and the OTP offer a range of powerful tools, and this guide will show you how to choose the best tool for each job, and use it effectively to quickly start building highly concurrent applications. Learn about Tasks, supervision trees, and the different types of Supervisors available to you. Understand why processes and process linking are the building blocks of concurrency in Elixir. Get comfortable with the OTP and use the GenServer behaviour to maintain process state for long-running jobs. Easily scale the number of running processes using the Registry. Handle large volumes of data and traffic spikes with GenStage, using back-pressure to your advantage. Create your first multi-stage data processing pipeline using producer, consumer, and producer-consumer stages. Process large collections with Flow, using MapReduce and more in parallel. Thanks to Broadway, you will see how easy it is to integrate with popular message broker systems, or even existing GenStage producers. Start building the high-performance and fault-tolerant applications Elixir is famous for today. What You Need: You'll need Elixir 1.9+ and Erlang/OTP 22+ installed on a Mac OS X, Linux, or Windows machine.




Data Processing Handbook for Complex Biological Data Sources


Book Description

Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened. Explains how to interpret enormous amounts of data generated using several experimental approaches in simple terms, thus relating biology and physics at the atomic level Presents sample data files and explains the usage of equations and web servers cited in research articles to extract useful information from their own biological data Discusses, in detail, raw data files, data processing strategies, and the web based sources relevant for data processing







Large Scale and Big Data


Book Description

Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book’s second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.




Tensors for Data Processing


Book Description

Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing Includes a wide range of applications from different disciplines Gives guidance for their application




Imaging Technologies and Data Processing for Food Engineers


Book Description

Food products are complex in nature which makes their analysis difficult. Different scientific disciplines such as biochemistry, microbiology, and nutrition, together with engineering concepts are involved in their characterization. However, imaging of food materials and data analysis has gained more importance due to innovations in the food industry, as well as the emergence of food nanotechnology. Image analysis protocols and techniques can be used in food structure analysis and process monitoring. Therefore, food structure imaging is crucial for various sections of the food chain starting from the raw material to the end product. This book provides information on imaging techniques such as electron microscopy, laser microscopy, x-ray tomography, raman and infrared imaging, together with data analysis protocols. It addresses the most recent advances in imaging technologies and data analysis of grains, liquid food systems (i.e. emulsions and gels), semi-solid and solid foams (i.e. bakery products, dough, expanded snacks), protein films, fruits and vegetable confectionery and nuts. This book also: Provides in-depth view of raw material characterization and process control Covers structure-functionality and structure-texture relationships Reviews applications to emerging areas of food science with an insight into future trends




Data Processing


Book Description

Data Processing: Made Simple, Second Edition presents discussions of a number of trends and developments in the world of commercial data processing. The book covers the rapid growth of micro- and mini-computers for both home and office use; word processing and the 'automated office'; the advent of distributed data processing; and the continued growth of database-oriented systems. The text also discusses modern digital computers; fundamental computer concepts; information and data processing requirements of commercial organizations; and the historical perspective of the computer industry. The computer hardware and software and the development and implementation of a computer system are considered. The book tackles careers in data processing; the tasks carried out by the data processing department; and the way in which the data processing department fits in with the rest of the organization. The text concludes by examining some of the problems of running a data processing department, and by suggesting some possible solutions. Computer science students will find the book invaluable.




Data Processing and Reconciliation for Chemical Process Operations


Book Description

Computer techniques have made online measurements available at every sampling period in a chemical process. However, measurement errors are introduced that require suitable techniques for data reconciliation and improvements in accuracy. Reconciliation of process data and reliable monitoring are essential to decisions about possible system modifications (optimization and control procedures), analysis of equipment performance, design of the monitoring system itself, and general management planning. While the reconciliation of the process data has been studied for more than 20 years, there is no single source providing a unified approach to the area with instructions on implementation. Data Processing and Reconciliation for Chemical Process Operations is that source. Competitiveness on the world market as well as increasingly stringent environmental and product safety regulations have increased the need for the chemical industry to introduce such fast and low cost improvements in process operations. Introduces the first unified approach to this important field Bridges theory and practice through numerous worked examples and industrial case studies Provides a highly readable account of all aspects of data classification and reconciliation Presents the reader with material, problems, and directions for further study




Data Processing on FPGAs


Book Description

Roughly a decade ago, power consumption and heat dissipation concerns forced the semiconductor industry to radically change its course, shifting from sequential to parallel computing. Unfortunately, improving performance of applications has now become much more difficult than in the good old days of frequency scaling. This is also affecting databases and data processing applications in general, and has led to the popularity of so-called data appliances—specialized data processing engines, where software and hardware are sold together in a closed box. Field-programmable gate arrays (FPGAs) increasingly play an important role in such systems. FPGAs are attractive because the performance gains of specialized hardware can be significant, while power consumption is much less than that of commodity processors. On the other hand, FPGAs are way more flexible than hard-wired circuits (ASICs) and can be integrated into complex systems in many different ways, e.g., directly in the network for a high-frequency trading application. This book gives an introduction to FPGA technology targeted at a database audience. In the first few chapters, we explain in detail the inner workings of FPGAs. Then we discuss techniques and design patterns that help mapping algorithms to FPGA hardware so that the inherent parallelism of these devices can be leveraged in an optimal way. Finally, the book will illustrate a number of concrete examples that exploit different advantages of FPGAs for data processing. Table of Contents: Preface / Introduction / A Primer in Hardware Design / FPGAs / FPGA Programming Models / Data Stream Processing / Accelerated DB Operators / Secure Data Processing / Conclusions / Bibliography / Authors' Biographies / Index