DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON


Book Description

In this comprehensive data science project focusing on sales analysis, forecasting, clustering, and prediction with Python, we embarked on an enlightening journey of data exploration and analysis. Our primary objective was to gain valuable insights from the dataset and leverage the power of machine learning to make accurate predictions and informed decisions. We began by meticulously exploring the dataset, examining its structure, and identifying any missing or inconsistent data. By visualizing features' distributions and conducting statistical analyses, we gained a better understanding of the data's characteristics and potential challenges. The first key aspect of the project was weekly sales forecasting. We employed various machine learning regression models, including Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, KNN Regression, Catboost Regression, Naïve Bayes Regression, and Multi-Layer Perceptron Regression. These models enabled us to predict weekly sales based on relevant features, allowing us to uncover patterns and relationships between different factors and sales performance. To optimize the performance of our regression models, we employed grid search with cross-validation. This technique systematically explored hyperparameter combinations to find the optimal configuration, maximizing the models' accuracy and predictive capabilities. Moving on to data segmentation, we adopted the widely-used K-means clustering technique, an unsupervised learning method. The goal was to divide data into distinct segments. By determining the optimal number of clusters through grid search with cross-validation, we ensured that the clustering accurately captured the underlying patterns in the data. The next phase of the project focused on predicting the cluster of new customers using machine learning classifiers. We employed powerful classifiers such as Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP) to make accurate predictions. Grid search with cross-validation was again applied to fine-tune the classifiers' hyperparameters, enhancing their performance. Throughout the project, we emphasized the significance of feature scaling techniques, such as Min-Max scaling and Standardization. These preprocessing steps played a crucial role in ensuring that all features were on the same scale, contributing equally during model training, and improving the models' interpretability. Evaluation of our models was conducted using various metrics. For regression tasks, we utilized mean squared error, while classification tasks employed accuracy, precision, recall, and F1-score. The use of cross-validation helped validate the models' robustness, providing comprehensive assessments of their effectiveness. Visualization played a vital role in presenting our findings effectively. Utilizing libraries such as Matplotlib and Seaborn, we created informative visualizations that facilitated the communication of complex insights to stakeholders and decision-makers. Throughout the project, we followed an iterative approach, refining our strategies through data preprocessing, model training, and hyperparameter tuning. The grid search technique proved to be an invaluable tool in identifying the best parameter combinations, resulting in more accurate predictions and meaningful customer segmentation. In conclusion, this data science project demonstrated the power of machine learning techniques in sales analysis, forecasting, and customer segmentation. The insights and recommendations generated from the models can provide valuable guidance for businesses seeking to optimize sales strategies, target marketing efforts, and make data-driven decisions to achieve growth and success. The project showcases the importance of leveraging advanced analytical methods to unlock hidden patterns and unleash the full potential of data for business success.




FOUR PROJECTS: PREDICTION AND FORECASTING USING MACHINE LEARNING WITH PYTHON


Book Description

PROJECT 1: GOLD PRICE ANALYSIS AND FORECASTING USING MACHINE LEARNING WITH PYTHON The challenge of this project is to accurately predict the future adjusted closing price of Gold ETF across a given period of time in the future. The problem is a regression problem, because the output value which is the adjusted closing price in this project is continuous value. Data for this study is collected from November 18th 2011 to January 1st 2019 from various sources. The data has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poor’s (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered. The dataset has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poor’s (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered. To perform forecasting based on regression adjusted closing price of gold, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. The machine learning models used predict gold daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model. PROJECT 2: WIND POWER ANALYSIS AND FORECASTING USING MACHINE LEARNING WITH PYTHON Renewable energy remains one of the most important topics for a sustainable future. Wind, being a perennial source of power, could be utilized to satisfy our power requirements. With the rise of wind farms, wind power forecasting would prove to be quite useful. It contains various weather, turbine and rotor features. Data has been recorded from January 2018 till March 2020. Readings have been recorded at a 10-minute interval. A longterm wind forecasting technique is thus required. The attributes in the dataset are as follows: ActivePower, AmbientTemperature, BearingShaftTemperature, Blade1PitchAngle, Blade2PitchAngle, Blade3PitchAngle, ControlBoxTemperature, GearboxBearingTemperature, GearboxOilTemperature, GeneratorRP, GeneratorWinding1Temperature, GeneratorWinding2Temperature, HubTemperature, MainBoxTemperature, NacellePosition, ReactivePower, RotorRPM, TurbineStatus, WTG, WindDirection, and WindSpeed. To perform forecasting based on regression active power, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict categorized active power as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: MACHINE LEARNING FOR CONCRETE COMPRESSIVE STRENGTH ANALYSIS AND PREDICTION WITH PYTHON Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear function of age and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. The actual concrete compressive strength (MPa) for a given mixture under a specific age (days) was determined from laboratory. This dataset is in raw form (not scaled). There are 1030 observations, 9 attributes, 8 quantitative input variables, and 1 quantitative output variable in dataset. The attributes in the dataset are as follows: Cement (component 1); Blast Furnace Slag (component 2); Fly Ash (component 3); Water (component 4); Superplasticizer (component 5); Coarse Aggregate; Fine Aggregate (component 7); Age; and Concrete compressive strength. To perform regression on concrete compressive strength, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict clusters as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON The dataset used in this project is from Walmart which is a renowned retail corporation that operates a chain of hypermarkets. Walmart has provided a data combining of 45 stores including store information and monthly sales. The data is provided on weekly basis. Walmart tries to find the impact of holidays on the sales of store. For which it has included four holidays’ weeks into the dataset which are Christmas, Thanksgiving, Super bowl, Labor Day. In this project, you are going to analyze, forecast weekly sales, perform clustering, and predict the resulting clusters. The dataset covers sales from 2010-02-05 to 2012-11-01. Following are the attributes in the dataset: Store - the store number; Date - the week of sales; Weekly_Sales - sales for the given store; Holiday_Flag - whether the week is a special holiday week 1 – Holiday week 0 – Non-holiday week; Temperature - Temperature on the day of sale; Fuel_Price - Cost of fuel in the region; CPI – Prevailing consumer price index; and Unemployment - Prevailing unemployment rate. To perform regression on weekly sales, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict clusters as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.




DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI


Book Description

The objective of this data science project is to analyze and predict customer behavior in the groceries market using Python and create a graphical user interface (GUI) using PyQt. The project encompasses various stages, starting from exploring the dataset and visualizing the distribution of features to RFM analysis, K-means clustering, predicting clusters with machine learning algorithms, and implementing a GUI for user interaction. The first step in this project involves exploring the dataset. We load the dataset containing information about customers' purchases in the groceries market and examine its structure. We check for missing values and perform data preprocessing if necessary, ensuring the dataset is ready for analysis. This initial exploration allows us to gain a better understanding of the data and its characteristics. Following the dataset exploration, we conduct exploratory data analysis (EDA). This step involves visualizing the distribution of different features within the dataset. By creating histograms, box plots, scatter plots, and other visualizations, we gain insights into the patterns, trends, and relationships within the data. EDA helps us identify outliers, understand feature distributions, and uncover potential correlations between variables. After the EDA phase, we move on to RFM analysis. RFM stands for Recency, Frequency, and Monetary analysis. In this step, we calculate three key metrics for each customer: recency (how recently a customer made a purchase), frequency (how often a customer made purchases), and monetary value (how much a customer spent). RFM analysis allows us to segment customers based on their purchasing behavior, identifying high-value customers and those who require re-engagement strategies. Once we have the clusters, we can utilize machine learning algorithms to predict the cluster for new or unseen customers. We train various models, including logistic regression, support vector machines, decision trees, k-nearest neighbors, random forests, gradient boosting, naive Bayes, adaboost, XGBoost, and LightGBM, on the clustered data. These models learn the patterns and relationships between customer features and their assigned clusters, enabling us to predict the cluster for new customers accurately. To evaluate the performance of our models, we utilize metrics such as accuracy, precision, recall, and F1-score. These metrics allow us to measure the models' predictive capabilities and compare their performance across different algorithms and preprocessing techniques. By assessing the models' performance, we can select the most suitable model for cluster prediction in the groceries market analysis. In addition to the analysis and prediction components, this project aims to provide a user-friendly interface for interaction and visualization. To achieve this, we implement a GUI using PyQt, a Python library for creating desktop applications. The GUI allows users to input new customer data and predict the corresponding cluster based on the trained models. It provides visualizations of the analysis results, including cluster distributions, confusion matrices, and decision boundaries. The GUI allows users to select different machine learning models and preprocessing techniques through radio buttons or dropdown menus. This flexibility empowers users to explore and compare the performance of various models, enabling them to choose the most suitable approach for their specific needs. The GUI's interactive nature enhances the usability of the project and promotes effective decision-making based on the analysis results. In conclusion, this project combines data science methodologies, including dataset exploration, visualization, RFM analysis, K-means clustering, predictive modeling, and GUI implementation, to provide insights into customer behavior and enable accurate cluster prediction in the groceries market. By leveraging these techniques, businesses can enhance their marketing strategies, improve customer targeting and retention, and ultimately drive growth and profitability in a competitive market landscape. The project's emphasis on user interaction and visualization through the GUI ensures that businesses can easily access and interpret the analysis results, making informed decisions based on data-driven insights.




Forecasting: principles and practice


Book Description

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.




Advancement of Intelligent Computational Methods and Technologies


Book Description

The compiled volume originates from the notable contributions presented at the 1st International Conference on Advancementof Intelligent Computational Methods and Technologies (AICMT2023), which took place in a hybrid format on June 27, 2023,at Delhi Technical Campus, Greater Noida, Uttar Pradesh, India. This comprehensive collection serves as an exploration into the dynamic domain of intelligent computational methods and technologies, offering insights into the latest and upcoming trends in computation methods. AICMT2023’s scope encompasses the evolutionary trajectory of computational methods, addressing pertinent issues in real time implementation, delving into the emergence of new intelligent technologies, exploring next-generation problem-solving methodologies, and other interconnected areas. The conference is strategically designed to spotlight current research trendswithin the field, fostering a vibrant research culture and contributing to the collective knowledge base.




Data Science and Machine Learning


Book Description

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code




THREE DATA SCIENCE PROJECTS FOR RFM ANALYSIS, K-MEANS CLUSTERING, AND MACHINE LEARNING BASED PREDICTION WITH PYTHON GUI


Book Description

PROJECT 1: RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI The dataset used in this project is the detailed data on sales of consumer goods obtained by ‘scanning’ the bar codes for individual products at electronic points of sale in a retail store. The dataset provides detailed information about quantities, characteristics and values of goods sold as well as their prices. The anonymized dataset includes 64.682 transactions of 5.242 SKU's sold to 22.625 customers during one year. Dataset Attributes are as follows: Date of Sales Transaction, Customer ID, Transaction ID, SKU Category ID, SKU ID, Quantity Sold, and Sales Amount (Unit price times quantity. For unit price, please divide Sales Amount by Quantity). This dataset can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI RFM analysis used in this project can be used as a marketing technique used to quantitatively rank and group customers based on the recency, frequency and monetary total of their recent transactions to identify the best customers and perform targeted marketing campaigns. The idea is to segment customers based on when their last purchase was, how often they've purchased in the past, and how much they've spent overall. Clustering, in this case K-Means algorithm, used in this project can be used to place similar customers into mutually exclusive groups; these groups are known as “segments” while the act of grouping is known as segmentation. Segmentation allows businesses to identify the different types and preferences of customers/markets they serve. This is crucial information to have to develop highly effective marketing, product, and business strategies. The dataset in this project has 38765 rows of the purchase orders of people from the grocery stores. These orders can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.




Data Science for Marketing Analytics


Book Description

Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language Key FeaturesUse data analytics and machine learning in a sales and marketing contextGain insights from data to make better business decisionsBuild your experience and confidence with realistic hands-on practiceBook Description Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects. You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions. As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior. By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making. What you will learnLoad, clean, and explore sales and marketing data using pandasForm and test hypotheses using real data sets and analytics toolsVisualize patterns in customer behavior using MatplotlibUse advanced machine learning models like random forest and SVMUse various unsupervised learning algorithms for customer segmentationUse supervised learning techniques for sales predictionEvaluate and compare different models to get the best outcomesOptimize models with hyperparameter tuning and SMOTEWho this book is for This marketing book is for anyone who wants to learn how to use Python for cutting-edge marketing analytics. Whether you're a developer who wants to move into marketing, or a marketing analyst who wants to learn more sophisticated tools and techniques, this book will get you on the right path. Basic prior knowledge of Python and experience working with data will help you access this book more easily.




Machine Learning for Time Series Forecasting with Python


Book Description

Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.




Data Science and Its Applications


Book Description

The term "data" being mostly used, experimented, analyzed, and researched, "Data Science and its Applications" finds relevance in all domains of research studies including science, engineering, technology, management, mathematics, and many more in wide range of applications such as sentiment analysis, social medial analytics, signal processing, gene analysis, market analysis, healthcare, bioinformatics etc. The book on Data Science and its applications discusses about data science overview, scientific methods, data processing, extraction of meaningful information from data, and insight for developing the concept from different domains, highlighting mathematical and statistical models, operations research, computer programming, machine learning, data visualization, pattern recognition and others. The book also highlights data science implementation and evaluation of performance in several emerging applications such as information retrieval, cognitive science, healthcare, and computer vision. The data analysis covers the role of data science depicting different types of data such as text, image, biomedical signal etc. useful for a wide range of real time applications. The salient features of the book are: Overview, Challenges and Opportunities in Data Science and Real Time Applications Addressing Big Data Issues Useful Machine Learning Methods Disease Detection and Healthcare Applications utilizing Data Science Concepts and Deep Learning Applications in Stock Market, Education, Behavior Analysis, Image Captioning, Gene Analysis and Scene Text Analysis Data Optimization Due to multidisciplinary applications of data science concepts, the book is intended for wide range of readers that include Data Scientists, Big Data Analysists, Research Scholars engaged in Data Science and Machine Learning applications.