Data Science with Semantic Technologies


Book Description

Gone are the days when data was interlinked with related data by humans and human interpretation was required. Data is no longer just data. It is now considered a Thing or Entity or Concept with meaning, so that a machine not only understands the concept but also extrapolates the way humans do. Data Science with Semantic Technologies: Deployment and Exploration, the second volume of a two-volume handbook set, provides a roadmap for the deployment of semantic technologies in the field of data science and enables the user to create intelligence through these technologies by exploring the opportunities and eradicating the challenges in the current and future time frame. In addition, this book offers the answer to various questions like: What makes a technology semantic as opposed to other approaches to data science? What is knowledge data science? How does knowledge data science relate to other fields? This book explores the optimal use of these technologies to provide the highest benefit to the user under one comprehensive source and title. As there is no dedicated book available in the market on this topic at this time, this book becomes a unique resource for scholars, researchers, data scientists, professionals, and practitioners. This volume can serve as an important guide toward applications of data science with semantic technologies for the upcoming generation.







Foundations of Semantic Web Technologies


Book Description

With more substantial funding from research organizations and industry, numerous large-scale applications, and recently developed technologies, the Semantic Web is quickly emerging as a well-recognized and important area of computer science. While Semantic Web technologies are still rapidly evolving, Foundations of Semantic Web Technologies focuses




Data Quality Management with Semantic Technologies


Book Description

Christian Fürber investigates the useful application of semantic technologies for the area of data quality management. Based on a literature analysis of typical data quality problems and typical activities of data quality management processes, he develops the Semantic Data Quality Management framework as the major contribution of this thesis. The SDQM framework consists of three components that are evaluated in two different use cases. Moreover, this thesis compares the framework to conventional data quality software. Besides the framework, this thesis delivers important theoretical findings, namely a comprehensive typology of data quality problems, ten generic data requirement types, a requirement-centric data quality management process, and an analysis of related work.




Semantic Web Science and Real-World Applications


Book Description

Continual advancements in web technology have highlighted the need for formatted systems that computers can utilize to easily read and sift through the hundreds of thousands of data points across the internet. Therefore, having the most relevant data in the least amount of time to optimize the productivity of users becomes a priority. Semantic Web Science and Real-World Applications provides emerging research exploring the theoretical and practical aspects of semantic web science and real-world applications within the area of big data. Featuring coverage on a broad range of topics such as artificial intelligence, social media monitoring, and microblogging recommendation systems, this book is ideally designed for IT consultants, academics, professionals, and researchers of web science seeking the current developments, requirements and standards, and technology spaces presented across academia and industries.




Semantic Systems. The Power of AI and Knowledge Graphs


Book Description

This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies.




Data Science for Economics and Finance


Book Description

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.




The Semantic Web: Semantics and Big Data


Book Description

This book constitutes the refereed proceedings of the 10th Extended Semantic Web Conference, ESWC 2013, held in Montpellier, France, in May 2013. The 42 revised full papers presented together with three invited talks were carefully reviewed and selected from 162 submissions. They are organized in tracks on ontologies; linked open data; semantic data management; mobile Web, sensors and semantic streams; reasoning; natural language processing and information retrieval; machine learning; social Web and Web science; cognition and semantic Web; and in-use and industrial tracks. The book also includes 17 PhD papers presented at the PhD Symposium.




Semantic Modeling for Data


Book Description

What value does semantic data modeling offer? As an information architect or data science professional, let’s say you have an abundance of the right data and the technology to extract business gold—but you still fail. The reason? Bad data semantics. In this practical and comprehensive field guide, author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft to increase the usability and value of your data and applications. You’ll also explore the pitfalls to avoid and dilemmas to overcome for building high-quality and valuable semantic representations of data. Understand the fundamental concepts, phenomena, and processes related to semantic data modeling Examine the quirks and challenges of semantic data modeling and learn how to effectively leverage the available frameworks and tools Avoid mistakes and bad practices that can undermine your efforts to create good data models Learn about model development dilemmas, including representation, expressiveness and content, development, and governance Organize and execute semantic data initiatives in your organization, tackling technical, strategic, and organizational challenges




Ontologies and Semantic Technologies for Intelligence


Book Description

Featuring chapters by selected contributors to the second international Ontology for the Intelligence Community (OIC) conference, this book offers a partial technology roadmap for decision makers in the field of information integration, sharing and situational awareness in the use of ontologies and semantic technologies for intelligence.