Data Uncertainty and Important Measures


Book Description

The first part of the book defines the concept of uncertainties and the mathematical frameworks that will be used for uncertainty modeling. The application to system reliability assessment illustrates the concept. In the second part, evidential networks as a new tool to model uncertainty in reliability and risk analysis is proposed and described. Then it is applied on SIS performance assessment and in risk analysis of a heat sink. In the third part, Bayesian and evidential networks are used to deal with important measures evaluation in the context of uncertainties.




How to Measure Anything


Book Description

Now updated with new research and even more intuitive explanations, a demystifying explanation of how managers can inform themselves to make less risky, more profitable business decisions This insightful and eloquent book will show you how to measure those things in your own business that, until now, you may have considered "immeasurable," including customer satisfaction, organizational flexibility, technology risk, and technology ROI. Adds even more intuitive explanations of powerful measurement methods and shows how they can be applied to areas such as risk management and customer satisfaction Continues to boldly assert that any perception of "immeasurability" is based on certain popular misconceptions about measurement and measurement methods Shows the common reasoning for calling something immeasurable, and sets out to correct those ideas Offers practical methods for measuring a variety of "intangibles" Adds recent research, especially in regards to methods that seem like measurement, but are in fact a kind of "placebo effect" for management – and explains how to tell effective methods from management mythology Written by recognized expert Douglas Hubbard-creator of Applied Information Economics-How to Measure Anything, Second Edition illustrates how the author has used his approach across various industries and how any problem, no matter how difficult, ill defined, or uncertain can lend itself to measurement using proven methods.




An Introduction to Uncertainty in Measurement


Book Description

Measurement shapes scientific theories, characterises improvements in manufacturing processes and promotes efficient commerce. In concert with measurement is uncertainty, and students in science and engineering need to identify and quantify uncertainties in the measurements they make. This book introduces measurement and uncertainty to second and third year students of science and engineering. Its approach relies on the internationally recognised and recommended guidelines for calculating and expressing uncertainty (known by the acronym GUM). The statistics underpinning the methods are considered and worked examples and exercises are spread throughout the text. Detailed case studies based on typical undergraduate experiments are included to reinforce the principles described in the book. This guide is also useful to professionals in industry who are expected to know the contemporary methods in this increasingly important area. Additional online resources are available to support the book at www.cambridge.org/9780521605793.




The Uncertainty Analysis of Model Results


Book Description

This book is a practical guide to the uncertainty analysis of computer model applications. Used in many areas, such as engineering, ecology and economics, computer models are subject to various uncertainties at the level of model formulations, parameter values and input data. Naturally, it would be advantageous to know the combined effect of these uncertainties on the model results as well as whether the state of knowledge should be improved in order to reduce the uncertainty of the results most effectively. The book supports decision-makers, model developers and users in their argumentation for an uncertainty analysis and assists them in the interpretation of the analysis results.




Uncertainty propagation and importance measure assessment


Book Description

The authors investigate the effects that different representations of epistemic uncertainty have on practical risk assessment problems. Two different application problems are considered: 1. the estimation of component importance measures in the presence of epistemic uncertainties; 2. the propagation of uncertainties through a risk flooding model. The focus is on the epistemic uncertainty affecting the parameters of the models that describe the components’ failures due to incomplete knowledge of their values. This epistemic uncertainty is represented using probability distributions when sufficient data is available for statistical analysis, and by possibility distributions when the information available to define the parameters’ values comes from experts, in the form of imprecise quantitative statements or judgments. Three case studies of increasing complexity are presented:  a pedagogical example of importance measure assessment on a three-component system from the literature;  assessment of importance measures for the auxiliary feed water system of a nuclear pressurized water reactor;  an application in environmental modelling, with an analysis of uncertainty propagation in a hydraulic model for the risk-based design of a flood protection dike.




An Introduction to Measurement Uncertainty


Book Description

"This introduction to measurement uncertainty is intended for metrology professionals working in calibration laboratories and metrology institutes, as well as students in tertiary-level science and engineering programmes. The subject matter is presented with an emphasis on developing models of the physical measurement process. The level of mathematics and statistics used is basic and is typically covered by high school studies"--Distributor's website.




Measurement Uncertainty in Chemical Analysis


Book Description

It is now becoming recognized in the measurement community that it is as important to communicate the uncertainty related to a specific measurement as it is to report the measurement itself. Without knowing the uncertainty, it is impossible for the users of the result to know what confidence can be placed in it; it is also impossible to assess the comparability of different measurements of the same parameter. This volume collects 20 outstanding papers on the topic, mostly published from 1999-2002 in the journal "Accreditation and Quality Assurance." They provide the rationale for why it is important to evaluate and report the uncertainty of a result in a consistent manner. They also describe the concept of uncertainty, the methodology for evaluating uncertainty, and the advantages of using suitable reference materials. Finally, the benefits to both the analytical laboratory and the user of the results are considered.




The Uncertainty in Physical Measurements


Book Description

The scienti c method is based on the measurement of di erent physical qu- tities and the search for relations between their values. All measured values of physical quantities are, however, a ected by uncertainty. Understanding the origin of uncertainty, evaluating its extent, and suitably taking it into account in data analysis, are fundamental steps for assessing the global accuracy of physical laws and the degree of reliability of their technological applications. The introduction to uncertainty evaluation and data analysis procedures is generally made in laboratory courses for freshmen. During my long-lasting teaching experience, I had the feeling of some sort of gap between the ava- able tutorial textbooks, and the specialized monographs. The present work aims at lling this gap, and has been tested and modi ed through a feedback interaction with my students for several years. I have tried to maintain as much as possible a tutorial approach, that, starting from a phenomenolo- cal introduction, progressively leads to an accurate de nition of uncertainty and to some of the most common procedures of data analysis, facilitating the access to advanced monographs. This book is mainly addressed to - dergraduate students, but can be a useful reference for researchers and for secondary school teachers. The book is divided into three parts and a series of appendices. Part I is devoted to a phenomenological introduction to measurement and uncertainty. In Chap.




Approach and Verification


Book Description

Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book is the fourth in a series of four volumes on this subject and features 12 papers, published between 2002-2009, that address the challenges and importance of systems approach in system verification and validation, stressing the use of advanced tools and approaches. Topics covered include: Systems integration and verification Software engineering in future automotive systems development Configuration management of the model-based design process




Risk Modeling, Assessment, and Management


Book Description

Presents systems-based theory, methodology, and applications in risk modeling, assessment, and management This book examines risk analysis, focusing on quantifying risk and constructing probabilities for real-world decision-making, including engineering, design, technology, institutions, organizations, and policy. The author presents fundamental concepts (hierarchical holographic modeling; state space; decision analysis; multi-objective trade-off analysis) as well as advanced material (extreme events and the partitioned multi-objective risk method; multi-objective decision trees; multi-objective risk impact analysis method; guiding principles in risk analysis); avoids higher mathematics whenever possible; and reinforces the material with examples and case studies. The book will be used in systems engineering, enterprise risk management, engineering management, industrial engineering, civil engineering, and operations research. The fourth edition of Risk Modeling, Assessment, and Management features: Expanded chapters on systems-based guiding principles for risk modeling, planning, assessment, management, and communication; modeling interdependent and interconnected complex systems of systems with phantom system models; and hierarchical holographic modeling An expanded appendix including a Bayesian analysis for the prediction of chemical carcinogenicity, and the Farmer’s Dilemma formulated and solved using a deterministic linear model Updated case studies including a new case study on sequential Pareto-optimal decisions for emergent complex systems of systems A new companion website with over 200 solved exercises that feature risk analysis theories, methodologies, and application Risk Modeling, Assessment, and Management, Fourth Edition, is written for both undergraduate and graduate students in systems engineering and systems management courses. The text also serves as a resource for academic, industry, and government professionals in the fields of homeland and cyber security, healthcare, physical infrastructure systems, engineering, business, and more.