Datasets for Brain-Computer Interface Applications
Author : Ian Daly
Publisher : Frontiers Media SA
Page : 198 pages
File Size : 17,27 MB
Release : 2021-11-25
Category : Science
ISBN : 2889716945
Author : Ian Daly
Publisher : Frontiers Media SA
Page : 198 pages
File Size : 17,27 MB
Release : 2021-11-25
Category : Science
ISBN : 2889716945
Author : Xiang Zhang
Publisher : World Scientific
Page : 294 pages
File Size : 20,13 MB
Release : 2021-09-14
Category : Computers
ISBN : 1786349604
Deep Learning for EEG-Based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI) in terms of representations, algorithms and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices.This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI data sets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI.Related Link(s)
Author : M.G. Sumithra
Publisher : John Wiley & Sons
Page : 325 pages
File Size : 50,39 MB
Release : 2023-03-14
Category : Computers
ISBN : 1119857201
BRAIN-COMPUTER INTERFACE It covers all the research prospects and recent advancements in the brain-computer interface using deep learning. The brain-computer interface (BCI) is an emerging technology that is developing to be more functional in practice. The aim is to establish, through experiences with electronic devices, a communication channel bridging the human neural networks within the brain to the external world. For example, creating communication or control applications for locked-in patients who have no control over their bodies will be one such use. Recently, from communication to marketing, recovery, care, mental state monitoring, and entertainment, the possible application areas have been expanding. Machine learning algorithms have advanced BCI technology in the last few decades, and in the sense of classification accuracy, performance standards have been greatly improved. For BCI to be effective in the real world, however, some problems remain to be solved. Research focusing on deep learning is anticipated to bring solutions in this regard. Deep learning has been applied in various fields such as computer vision and natural language processing, along with BCI growth, outperforming conventional approaches to machine learning. As a result, a significant number of researchers have shown interest in deep learning in engineering, technology, and other industries; convolutional neural network (CNN), recurrent neural network (RNN), and generative adversarial network (GAN). Audience Researchers and industrialists working in brain-computer interface, deep learning, machine learning, medical image processing, data scientists and analysts, machine learning engineers, electrical engineering, and information technologists.
Author : Aboul Ella Hassanien
Publisher : Springer
Page : 422 pages
File Size : 13,6 MB
Release : 2014-11-01
Category : Technology & Engineering
ISBN : 3319109782
The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.
Author : Desney S. Tan
Publisher : Springer Science & Business Media
Page : 286 pages
File Size : 21,61 MB
Release : 2010-06-10
Category : Computers
ISBN : 1849962723
For generations, humans have fantasized about the ability to create devices that can see into a person’s mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical processes within the brain which correspond with certain forms of thought. Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction broadly surveys research in the Brain-Computer Interface domain. More specifically, each chapter articulates some of the challenges and opportunities for using brain sensing in Human-Computer Interaction work, as well as applying Human-Computer Interaction solutions to brain sensing work. For researchers with little or no expertise in neuroscience or brain sensing, the book provides background information to equip them to not only appreciate the state-of-the-art, but also ideally to engage in novel research. For expert Brain-Computer Interface researchers, the book introduces ideas that can help in the quest to interpret intentional brain control and develop the ultimate input device. It challenges researchers to further explore passive brain sensing to evaluate interfaces and feed into adaptive computing systems. Most importantly, the book will connect multiple communities allowing research to leverage their work and expertise and blaze into the future.
Author : Fangzhou Xu
Publisher : Frontiers Media SA
Page : 232 pages
File Size : 35,37 MB
Release : 2023-11-15
Category : Science
ISBN : 2832539025
Author : Duo Chen
Publisher : Frontiers Media SA
Page : 209 pages
File Size : 26,35 MB
Release : 2023-03-31
Category : Science
ISBN : 2832516289
Author : IEEE Staff
Publisher :
Page : pages
File Size : 14,41 MB
Release : 2019-07-06
Category :
ISBN : 9781538659076
The 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) aims to provide a forum that brings together International researchers from academia and practitioners in the industry to meet and exchange ideas and recent research work on all aspects of Information and Communication Technologies including Computing, communication, IOT, LiDAR, Image Analysis, wireless communication and other new technologies
Author : Ravichander Janapati
Publisher : CRC Press
Page : 331 pages
File Size : 42,27 MB
Release : 2023-09-22
Category : Computers
ISBN : 1000906299
Human–Machine Interface Technology Advancements and Applications focuses on analysis, design, and evaluation perspectives in HMI technological breakthroughs and applications. It covers a wide range of ideas, methodologies, approaches, and instruments to give the reader a thorough understanding of the field's current academic and industry practice and debate. Physical, cognitive, social, and emotional factors are all considered in the work, which is exemplified by key application fields such as aerospace, automobile, medicine, and defense. This book covers AI and machine learning methodologies as well as biological signals and HMI applications. Nanotechnology, user interface design, and interactive systems are also featured. The MATLAB approach to signal processing applications is also included. This book discusses advances in the field of human–machine interfaces and provides practical knowledge in biomedical signal processing, AI, and machine learning. It discusses augmented reality/virtual reality-based HMI applications. It examines advances in nanotechnology, user interface design, and interactive systems. This book is intended to serve as a research guide that will both inform readers about the fundamentals of HMI from academic and industrial perspectives and provide a glimpse into how human-centered designers, such as engineers and human factors specialists, will attempt to design and develop human–machine systems in the future.
Author : Rajesh P. N. Rao
Publisher : Cambridge University Press
Page : 337 pages
File Size : 30,88 MB
Release : 2013-09-30
Category : Computers
ISBN : 0521769418
The idea of interfacing minds with machines has long captured the human imagination. Recent advances in neuroscience and engineering are making this a reality, opening the door to restoration and augmentation of human physical and mental capabilities. Medical applications such as cochlear implants for the deaf and neurally controlled prosthetic limbs for the paralyzed are becoming almost commonplace. Brain-computer interfaces (BCIs) are also increasingly being used in security, lie detection, alertness monitoring, telepresence, gaming, education, art, and human augmentation. This introduction to the field is designed as a textbook for upper-level undergraduate and first-year graduate courses in neural engineering or brain-computer interfacing for students from a wide range of disciplines. It can also be used for self-study and as a reference by neuroscientists, computer scientists, engineers, and medical practitioners. Key features include questions and exercises in each chapter and a supporting website.