David Hilbert's Lectures on the Foundations of Physics 1915-1927


Book Description

These documents do nothing less than bear witness to one of the most dramatic changes in the foundations of science. The book has three sections that cover general relativity, epistemological issues, and quantum mechanics. This fascinating work will be a vital text for historians and philosophers of physics, as well as researchers in related physical theories.




Computational Multiscale Modeling of Fluids and Solids


Book Description

The expanded 3rd edition of this established textbook offers an updated overview and review of the computational physics techniques used in materials modelling over different length and time scales. It describes in detail the theory and application of some of the most important methods used to simulate materials across the various levels of spatial and temporal resolution. Quantum mechanical methods such as the Hartree-Fock approximation for solving the Schrödinger equation at the smallest spatial resolution are discussed as well as the Molecular Dynamics and Monte-Carlo methods on the micro- and meso-scale up to macroscopic methods used predominantly in the Engineering world such as Finite Elements (FE) or Smoothed Particle Hydrodynamics (SPH). Extensively updated throughout, this new edition includes additional sections on polymer theory, statistical physics and continuum theory, the latter being the basis of FE methods and SPH. Each chapter now first provides an overview of the key topics covered, with a new “key points” section at the end. The book is aimed at beginning or advanced graduate students who want to enter the field of computational science on multi-scales. It provides an in-depth overview of the basic physical, mathematical and numerical principles for modelling solids and fluids on the micro-, meso-, and macro-scale. With a set of exercises, selected solutions and several case studies, it is a suitable book for students in physics, engineering, and materials science, and a practical reference resource for those already using materials modelling and computational methods in their research.




Beyond Einstein


Book Description

Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology explores the rich interplay between mathematical and physical ideas by studying the interactions of major actors and the roles of important research communities over the course of the last century.




Higher Speculations


Book Description

A historical account of highly ambitious attempts to understand all of nature in terms of fundamental physics. Presenting old and new 'theories of everything' in their historical contexts, the book discusses the nature and limits of scientific explanation in connection with concrete case studies.




Symmetries in Fundamental Physics


Book Description

Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also understand the implications of quantum physics and symmetry considerations: Poincare invariance dictates both the characteristic properties of particles (mass, spin, ...) and the wave equations of spin 0, 1/2, 1, ... objects. Further, the work of C.N. Yang and R. Mills reveals the consequences of internal symmetries as exemplified in the symmetry group of elementary particle physics. Given this pivotal role of symmetries it is thus not surprising that current research in fundamental physics is to a great degree motivated and inspired by considerations of symmetry. The treatment of symmetries in this monograph ranges from classical physics to now well-established theories of fundamental interactions, to the latest research on unified theories and quantum gravity.




Model and Mathematics: From the 19th to the 21st Century


Book Description

This open access book collects the historical and medial perspectives of a systematic and epistemological analysis of the complicated, multifaceted relationship between model and mathematics, ranging from, for example, the physical mathematical models of the 19th century to the simulation and digital modelling of the 21st century. The aim of this anthology is to showcase the status of the mathematical model between abstraction and realization, presentation and representation, what is modeled and what models. This book is open access under a CC BY 4.0 license.




The Philosophy and Physics of Noether's Theorems


Book Description

In 1918, Emmy Noether, in her paper Invariante Variationsprobleme, proved two theorems (and their converses) on variational problems that went on to revolutionise theoretical physics. 100 years later, the mathematics of Noether's theorems continues to be generalised, and the physical applications of her results continue to diversify. This centenary volume brings together world-leading historians, philosophers, physicists, and mathematicians in order to clarify the historical context of this work, its foundational and philosophical consequences, and its myriad physical applications. Suitable for advanced undergraduate and graduate students and professional researchers, this is a go-to resource for those wishing to understand Noether's work on variational problems and the profound applications which it finds in contemporary physics.




Krylov Subspace Methods


Book Description

The mathematical theory of Krylov subspace methods with a focus on solving systems of linear algebraic equations is given a detailed treatment in this principles-based book. Starting from the idea of projections, Krylov subspace methods are characterised by their orthogonality and minimisation properties. Projections onto highly nonlinear Krylov subspaces can be linked with the underlying problem of moments, and therefore Krylov subspace methods can be viewed as matching moments model




Fundamentals of Advanced Mathematics V3


Book Description

Fundamentals of Advanced Mathematics, Volume Three, begins with the study of differential and analytic infinite-dimensional manifolds, then progresses into fibered bundles, in particular, tangent and cotangent bundles. In addition, subjects covered include the tensor calculus on manifolds, differential and integral calculus on manifolds (general Stokes formula, integral curves and manifolds), an analysis on Lie groups, the Haar measure, the convolution of functions and distributions, and the harmonic analysis over a Lie group. Finally, the theory of connections is (linear connections, principal connections, and Cartan connections) covered, as is the calculus of variations in Lagrangian and Hamiltonian formulations. This volume is the prerequisite to the analytic and geometric study of nonlinear systems. - Includes sections on differential and analytic manifolds, vector bundles, tensors, Lie derivatives, applications to algebraic topology, and more - Presents an ideal prerequisite resource on the analytic and geometric study of nonlinear systems - Provides theory as well as practical information




General Relativity Conflict and Rivalries


Book Description

This book focuses on Albert Einstein and his interactions with, and responses to, various scientists, both famous and lesser-known. It takes as its starting point that the discussions between Einstein and other scientists all represented a contribution to the edifice of general relativity and relativistic cosmology. These scientists with whom Einstein implicitly or explicitly interacted form a complicated web of collaboration, which this study explores, focusing on their implicit and explicit responses to Einstein’s work. This analysis uncovers latent undercurrents, indiscernible to other approaches to tracking the intellectual pathway of Einstein to his general theory of relativity. The interconnections and interactions presented here reveal the central figures who influenced Einstein during this intellectual period. Despite current approaches to history presupposing that the efforts of scientists such as Max Abraham and Gunnar Nordström, which differed from Einstein’s own views, be relegated to the background, this book shows that they all had an impact on the development of Einstein’s theories, stressing the limits of approaches focusing solely on Einstein. As such, General Relativity Conflict and Rivalries proves that the general theory of relativity was not developed as a single, coherent construction by an isolated, brooding individual, but, rather, that it came to fruition through Einstein’s conflicts and interactions with other scientists, and was consolidated by his creative processes during these exchanges.