DC Electrical Circuits


Book Description

An essential resource for both students and teachers alike, this DC Electrical Circuits Workbook contains over 500 problems spread across seven chapters. Each chapter begins with an overview of the relevant theory and includes exercises focused on specific kinds of circuit problems such as Analysis, Design, Challenge and Computer Simulation. An Appendix offers the answers to the odd-numbered Analysis and Design exercises. Chapter topics include fundamental for current, voltage, energy, power and resistor color code; series, parallel, and series-parallel resistive circuits using either voltage or current sources; analysis techniques such as superposition, source conversions, mesh analysis, nodal analysis, Thévenin's and Norton's theorems, and delta-wye conversions; plus dependent sources, and an introduction to capacitors and inductors. RL and RC circuits are included for DC initial and steady state response along with transient response. This is the print version of the on-line OER.




DC/AC Fundamentals


Book Description

For courses in Electronics and Electricity Technology DC/AC Fundamentals: A Systems Approach takes a broader view of DC/AC circuits than most standard texts, providing relevance to basic theory by stressing applications of dc/ac circuits in actual systems.




DC-AC Laboratory Manual


Book Description




AC Electrical Circuits


Book Description

An essential resource for both students and teachers alike, this AC Electrical Circuits Workbook contains over 500 problems spread across ten chapters. Each chapter begins with an overview of the relevant theory and includes exercises focused on specific kinds of circuit problems such as Analysis, Design, Challenge and Computer Simulation. An Appendix offers the answers to the odd-numbered Analysis and Design exercises. Chapter topics include series, parallel, and series-parallel RLC circuits; analysis techniques such as superposition, source conversions, mesh analysis, nodal analysis, Thévenin's and Norton's theorems, and delta-wye conversions; plus series and parallel resonance, dependent sources, polyphase power, magnetic circuits, and more. This is the print version of the on-line OER.




Multisim Experiments for DC/AC, Digital, and Devices Courses


Book Description

The National Instruments Multisim® software is a versatile design and simulation program. The intent of this workbook is to simulate a laboratory experience in electronics and help you develop a working knowledge of the Multisim software to enter and analyze circuit designs. The circuits in this manual illustrate fundamental concepts in dc/ac, digital, and device electronics. Each section will contain some background theory for the circuits that you will investigate, but only to help provide context for the specific topics that the section will cover. For best results, you should use this workbook to supplement, rather than replace, a textbook that discusses the subject material in depth. This manual provides suggested reading for each experiment."--pub. desc.







Basic Electricity


Book Description




Lab Manual for Electronics


Book Description

The emphasis is first on understanding the characteristics of basic circuits including resistors, capacitors, diodes, and bipolar and field effect transistors. The readers then use this understanding to construct more complex circuits such as power supplies, differential amplifiers, tuned circuit amplifiers, a transistor curve tracer, and a digital voltmeter. In addition, readers are exposed to special topics of current interest, such as the propagation and detection of signals through fiber optics, the use of Van der Pauw patterns for precise linewidth measurements, and high gain amplifiers based on active loads. KEY TOPICS: Chapter topics include Thevenin's Theorem; Resistive Voltage Division; Silicon Diodes; Resistor Capacitor Circuits; Half Wave Rectifiers; DC Power Supplies; Diode Applications; Bipolar Transistors; Field Effect Transistors; Characterization of Op-Amp Circuits; Transistor Curve Tracer; Introduction to PSPICE and AC Voltage Dividers; Characterization and Design of Emitter and Source Followers; Characterization and Design of an AC Variable Gain Amplifier; Design of Test Circuits for BJT's and FET's and Design of FET Ring Oscillators; Design and Characterization of Emitter Coupled Transistor Pairs; Tuned Amplifier and Oscillator; Design of Am Radio Frequency Transmitter and Receiver; Design of Oscillators Using Op-Amps; Current Mirrors and Active Loads; Sheet Resistance; Design of Analog Fiber Optic Transmission System; Digital Voltmeter.




A First Lab in Circuits and Electronics


Book Description

* Experiments are linked to real applications. Students are likely to be interested and excited to learn more and explore. Example of experiments linked to real applications can be seen in Experiment 2, steps 6, 7, 15, and 16; Experiment 5, steps 6 to 10 and Experiment 7, steps 12 to 20. * Self-contained background to all electronics experiments. Students will be able to follow without having taken an electronics course. Includes a self-contained introduction based on circuits only. For the instructor this provides flexibility as to when to run the lab. It can run concurrently with the first circuits analysis course. * Review background sections are provided. This convenient text feature provides an alternative point of view; helps provide a uniform background for students of different theoretical backgrounds. * A "touch-and-feel" approach helps to provide intuition and to make things "click". Rather than thinking of the lab as a set of boring procedures, students get the idea that what they are learning is real. * Encourages students to explore and to ask "what if" questions. Helps students become active learners. * Introduces students to simple design at a very early stage. Helps students see the relevance of what they are learning, and to become active learners. * Helps students become tinkerers and to experiment on their own. Students are encouraged to become creative, and their mind is opened to new possibilities. This also benefits their subsequent professional work and/or graduate study.




The Science of Electronics


Book Description

Providing clear and complete coverage of fundamental plus state-of-the-art topics The Science of Electronics contains many excellent features. The approach is to present the essential elements of semiconductor devices and circuits as well as operational amplifiers and modern analog integrated circuits in a very clear and simple format. Concepts are well illustrated by many worked-out examples and figures. In addition to fundamental topics, advanced areas of digital technology are also introduced. The relationship of technology to science is emphasized. Topics include: analog concepts; diodes and applications; bipolar junction transistors; field-effect transistors; mulitstage, RF, and differential amplifiers; operational amplifiers; basic op-amp circuits; active filters; special-purpose amplifiers; oscillators and timers; voltage regulators; and sensing and control circuits. For the electronics technician that wants to review the basics; this is an excellent desk reference.