DC Technology in Utility Grids


Book Description

The assembly of this study started in 2013 during the preparation of the foundation of the Flexible Electrical Networks (FEN) Research Campus, an institution supported by the German Federal Ministry of Education and Science, concentrating on DC technology in power grids as an enabler for the energy transition. It reflects the state-of-the-art and research needs of DC technology against the background of application in public grids up until the year 2015. Topics as components, control, management and automation, high-, medium, and low-voltage grid concepts as well as social dimensions, economics, and impact on living beings are considered. After substantial editorial effort, its first public edition has become ready now. The aim of FEN is to investigate and to develop flexible power grids. Such grid will safeguard the future energy supply with a high share of fluctuating and decentralized renewable energy sources. At the same time, these grids will enable a reliable and affordable energy supply in the future. The objective is to provide new technologies and concepts for the security and quality of the energy supply in the transmission and distribution grids. To pursue this goal, the use of direct-current (DC) technology, based on power electronics, automation and communication technologies, plays an important role. Although DC technology is not yet established as a standard technology in the public electrical power supply system, its high potential has been widely recognized. The use of DC is an enabler to make the future energy supply system more economical than a system based on alternating-current (AC), because of its superior properties in handling distributed and fluctuation power generation. Indeed, DC connections are already the most cost-efficient solution in cases of very high-power long-distance point-to-point transmission of electricity or via submarine cables. The objective of the FEN Research Campus is now to achieve and demonstrate feasibility of DC as a standard solution for future electrical grids, as described in this study.




Smart and Power Grid Systems – Design Challenges and Paradigms


Book Description

The Smart Grid represents an unprecedented opportunity to move the energy industry into a new era of reliability, availability, and efficiency that will contribute to our economic and environmental health. During the transition period, it will be critical to carry out testing, technology improvements, consumer education, development of standards and regulations, and information sharing between projects to ensure that the benefits we envision from the Smart Grid become a reality. Today, an electricity disruption such as a blackout can have a domino effect—a series of failures that can affect banking, communications, traffic, and security. This is a particular threat in the winter, when homeowners can be left without heat. A smarter grid will add resiliency to our electric power system and make it better prepared to address emergencies such as severe storms, earthquakes, large solar flares, and terrorist attacks. Because of its two-way interactive capacity, the Smart Grid will allow for automatic rerouting when equipment fails or outages occur. This will minimize outages and minimize the effects when they do happen. When a power outage occurs, Smart Grid technologies will detect and isolate the outages, containing them before they become large-scale blackouts. The new technologies will also help ensure that electricity recovery resumes quickly and strategically after an emergency—routing electricity to emergency services first, for example. In addition, the Smart Grid will take greater advantage of customer-owned power generators to produce power when it is not available from utilities. By combining these "distributed generation" resources, a community could keep its health center, police department, traffic lights, phone system, and grocery stores operating during emergencies. In addition, the Smart Grid is a way to address an aging energy infrastructure that needs to be upgraded or replaced. This book shows that Smart Grids can address energy efficiency, to bring increased awareness to consumers about the connection between electricity use and the environment, bring increased national security to our energy system—drawing on greater amounts of home-grown electricity that is more resistant to natural disasters and attack.




Smart Grid and Enabling Technologies


Book Description

SMART GRID AND ENABLING TECHNOLOGIES Discover foundational topics in smart grid technology as well as an exploration of the current and future state of the industry As the relationship between fossil fuel use and climate change becomes ever clearer, the search is on for reliable, renewable and less harmful sources of energy. Sometimes called the “electronet” or the “energy Internet,” smart grids promise to integrate renewable energy, information, and communication technologies with the existing electrical grid and deliver electricity more efficiently and reliably. Smart Grid and Enabling Technologies delivers a complete vision of smart grid technology and applications, including foundational and fundamental technologies, the technology that enables smart grids, the current state of the industry, and future trends in smart energy. The book offers readers thorough discussions of modern smart grid technology, including advanced metering infrastructure, net zero energy buildings, and communication, data management, and networks in smart grids. The accomplished authors also discuss critical challenges and barriers facing the smart grid industry as well as trends likely to be of importance in its future development. Readers will also benefit from the inclusion of: A thorough introduction to smart grid architecture, including traditional grids, the fundamentals of electric power, definitions and classifications of smart grids, and the components of smart grid technology An exploration of the opportunities and challenges posed by renewable energy integration Practical discussions of power electronics in the smart grid, including power electronics converters for distributed generation, flexible alternating current transmission systems, and high voltage direct current transmission systems An analysis of distributed generation Perfect for scientists, researchers, engineers, graduate students, and senior undergraduate students studying and working with electrical power systems and communication systems. Smart Grid and Enabling Technologies will also earn a place in the libraries of economists, government planners and regulators, policy makers, and energy stakeholders working in the smart grid field.




DC Distribution Systems and Microgrids


Book Description

DC electric power distribution systems have higher efficiency, better current carrying capacity and faster response when compared to conventional AC systems. They also provide a more natural interface with many types of renewable energy sources. Furthermore, there are fewer issues with reactive power flow, power quality and frequency regulation, resulting in a notably less complex control system. All these facts lead to increased applications of DC systems in modern power systems. Still, design and operation of these systems imposes a number of specific challenges, mostly related to lack of mature protection technology and operational experience, as well as very early development stage of standards regarding DC based power infrastructure.




Integration of AC/DC Microgrids into Power Grids


Book Description

AC/DC Microgrids are a small part of low voltage distribution networks that are located far from power substations, and are interconnected through the point of common coupling to power grids. These systems are important keys for the flexible, techno-economic, and environmental-friendly generation of units for the reliable operation and cost-effective planning of smart electricity grids. Although AC/DC microgrids, with the integration of renewable energy resources and other energy systems, such as power-to-gas, combined heat and power, combined cooling heat and power, power-to-heat, power-to-vehicle, pump and compressed air storage, have several advantages, there are some technical aspects that must be addressed. This Special Issue aims to study the configuration, impacts, and prospects of AC/DC microgrids that enable enhanced solutions for intelligent and optimized electricity systems, energy storage systems, and demand-side management in power grids with an increasing share of distributed energy resources. It includes AC/DC microgrid modeling, simulation, control, operation, protection, dynamics, planning, reliability and security, as well as considering power quality improvement, load forecasting, market operations, energy conversion, cyber/physical security, supervisory and monitoring, diagnostics and prognostics systems.




Smart Grids


Book Description

The utilization of sensors, communications, and computer technologies to create greater efficiency in the generation, transmission, distribution, and consumption of electricity will enable better management of the electric power system. As the use of smart grid technologies grows, utilities will be able to automate meter reading and billing and consumers will be more aware of their energy usage and the associated costs. The results will require utilities and their suppliers to develop new business models, strategies, and processes. With an emphasis on reducing costs and improving return on investment (ROI) for utilities, Smart Grids: Clouds, Communications, Open Source, and Automation explores the design and implementation of smart grid technologies, considering the benefits to consumers as well as businesses. Focusing on industrial applications, the text: Provides a state-of-the-art account of the smart grid Explains how smart grid technologies are currently being used Includes detailed examples and test cases for real-life implementation Discusses trade-offs associated with the utilization of smart grid technologies Describes smart grid simulation software and offers insight into the future of the smart grid The electric power grid is in the early stages of a sea of change. Nobody knows which business models will survive, but companies heeding the lessons found in Smart Grids: Clouds, Communications, Open Source, and Automation might just increase their chances for success.




Smart Grids


Book Description

The latest edition features a new chapter on implementation and operation of an integrated smart grid with updates to multiple chapters throughout the text. New sections on Internet of things, and how they relate to smart grids and smart cities, have also been added to the book. It describes the impetus for change in the electric utility industry and discusses the business drivers, benefits, and market outlook of the smart grid initiative. The book identifies the technical framework of enabling technologies and smart solutions and describes the role of technology developments and coordinated standards in smart grid, including various initiatives and organizations helping to drive the smart grid effort. With chapters written by leading experts in the field, the text explains how to plan, integrate, implement, and operate a smart grid.




Development and Integration of Microgrids


Book Description

The utilization of AC or DC microgrids across the world has increased dramatically over the years and has led to development opportunities as well as technical challenges when they are connected to the main grids or used as stand-alone systems. This book overviews the development of AC/DC microgrids; explains the microgrid concepts, design and control considerations, discusses operational and technical issues, as well as interconnection and integration of these systems. This book is served as a reference for a general audience of researchers, academics, PhD students and practitioners in the field of power engineering.




DC Microgrids


Book Description

DC MICROGRIDS Written and edited by a team of well-known and respected experts in the field, this new volume on DC microgrids presents the state-of-the-art developments and challenges in the field of microgrids for sustainability and scalability for engineers, researchers, academicians, industry professionals, consultants, and designers. The electric grid is on the threshold of a paradigm shift. In the past few years, the picture of the grid has changed dramatically due to the introduction of renewable energy sources, advancements in power electronics, digitalization, and other factors. All these megatrends are pointing toward a new electrical system based on Direct Current (DC). DC power systems have inherent advantages of no harmonics, no reactive power, high efficiency, over the conventional AC power systems. Hence, DC power systems have become an emerging and promising alternative in various emerging applications, which include distributed energy sources like wind, solar and Energy Storage System (ESS), distribution networks, smart buildings, remote telecom systems, and transport electrification like electric vehicles (EVs). All these applications are designed at different voltages to meet their specific requirements individually because of the lack of standardization. Thus, the factors influencing the DC voltages and system operation needed to be surveyed and analyzed, which include voltage standards, architecture for existing and emerging applications, topologies and control strategies of power electronic interfaces, fault diagnosis and design of the protection system, optimal economical operation, and system reliability.




Stability Analysis, Flexible Control and Optimal Operation of Microgrid


Book Description

This book intends to report the new results of the microgrid in stability analysis, flexible control and optimal operation. The oscillatory stability issue of DC microgrid is explored and further solved. Flexible and stable voltage & frequency control of microgrid is put forward considering the distributed generations or distributed energy storages. The optimal operation of multi-energy is researched in view of economic efficiency and low-carbon development. The results of this book are original from authors who carry out the related research together for a long time, which is a comprehensive summary for authors’ latest research results. The book is likely to be of interest to university researchers, electrical engineers and graduate students in power systems, power electronics, renewable energy and microgrid.