Deactivation of Heavy Oil Hydroprocessing Catalysts


Book Description

Written by a scientist and researcher with more than 25 years of experience in the field, this serves as a complete guide to catalyst activity loss during the hydroprocessing of heavy oils. Explores the physical and chemical properties of heavy oils and hydroprocessing catalysts; the mechanisms of catalyst deactivation; catalyst characterization by a variety of techniques and reaction conditions; laboratory and commercial information for model validations; and more Demonstrates how to develop correlations and models for a variety of reaction scales with step-by-step descriptions and detailed experimental data Contains important implications for increasing operational efficiencies within the petroleum industry An essential reference for professionals and researchers working in the refining industry as well as students taking courses on chemical reaction engineering







Hydroprocessing of Heavy Oils and Residua


Book Description

Many oil refineries employ hydroprocessing for removing sulfur and other impurities from petroleum feedstocks. Capable of handling heavier feedstocks than other refining techniques, hydroprocessing enables refineries to produce higher quality products from unconventional- and formerly wasted- sources. Hydroprocessing of Heavy Oils and Residua




Catalytic Hydroprocessing of Petroleum and Distillates


Book Description

This work is based on the proceedings of the American Institute of Chemical Engineers' Spring National Meeting in Houston, Texas, March 28 to April 1, 1993. It details various facets of residue upgrading and distillate hydrotreating, stressing the importance of selective catalysts in aromatics reduction. New aromatics saturation processes for the production of very low-aromatic distillates are introduced.




Catalysts for Upgrading Heavy Petroleum Feeds


Book Description

The book provides the most up-to-date information on testing and development of hydroprocessing catalysts with the aim to improve performance of the conventional and modified catalysts as well as to develop novel catalytic formulations. Besides diverse chemical composition, special attention is devoted to pore size and pore volume distribution of the catalysts. Properties of the catalysts are discussed in terms of their suitability for upgrading heavy feeds. For this purpose atmospheric residue was chosen as the base for defining other heavy feeds which comprise vacuum gas oil, deasphalted oil and vacuum residues in addition to topped heavy crude and bitumen. Attention is paid to deactivation with the aim to extent catalyst life during the operation. Into consideration is taken the loss of activity due to fouling, metal deposition, coke formed as the result of chemical reaction and poisoning by nitrogen bases. Mathematical models were reviewed focussing on those which can simulate performance of the commercial operations. Configurations of hydroprocessing reactors were compared in terms of their capability to upgrade various heavy feeds providing that a suitable catalyst was selected. Strategies for regeneration, utilization and disposal of spent hydroprocesing catalysts were evaluated. Potential of the non-conventional hydroprocessing involving soluble/dispersed catalysts and biocatalysts in comparison with conventional methods were assessed to identify issues which prevent commercial utilization of the former. A separate chapter is devoted to catalytic dewaxing because the structure of dewaxing catalysts is rather different than that of hydroprocessing catalysts, i.e., the objective of catalytic dewaxing is different than that of the conventional hydroprocessing, The relevant information in the scientific literature is complemented with the Patent literature covering the development of catalysts and novel reactor configurations.Separate chapter was added to distinguish upgrading capabilities of the residues catalytic cracking processes from those employing hydroprocessing. Upper limits on the content of carbon residue and metals in the feeds which can still be upgraded by the former processes differ markedly from those in the feeds which can be upgraded by hydroprocessing. It is necessary that the costs of modifications of catalytic cracking processes to accommodate heavier feeds are compared with that of hydroprocessing methods.Objective of the short chapter on upgrading by carbon rejecting processes was to identify limits of contaminants in heavy feeds beyond which catalytic upgrading via hydroprocessing becomes uneconomical because of the costs of catalyst inventory and that of reactors and equipment. - Comprehensive and most recent information on hydroprocessing catalysts for upgrading heavy petroleum feeds.- Compares conventional, modified and novel catalysts for upgrading a wide range of heavy petroleum feeds.- Comparison of conventional with non-conventional hydroprocessing, the latter involving soluble/dispersed catalysts and biocatalysts. - Development and comparison of mathematical models to simulate performance of catalytic reactors including most problematic feeds.- Residues upgrading by catalytic cracking in comparison to hydroprocessing.




Catalysts for Hydroprocessing of Heavy Oils and Petroleum Residues


Book Description

With the increasing demand of petroleum-derived products due to the world population and development, upgrading of crude oil with heavier quality and petroleum residues is unavoidable. Hydroprocessing is a preferable process for heavy oil upgrading. The process is operated with the presence of a catalyst, and catalysis plays an important role in the process. An overview regarding the catalyst design such as the catalyst active metal, active phase, support properties, and catalyst structure for heavy oil hydroprocessing is provided. There also include some recent advancements related to catalytic hydroprocessing of heavy oils and residue processes. Further catalyst performance improvement will likely come from catalyst optimization and better catalyst deactivation resistance resulting from metal poisoning and coke formation.




Handbook of Spent Hydroprocessing Catalysts


Book Description

Handbook of Spent Hydroprocessing Catalysts, Second Edition, covers all aspects of spent hydroprocessing catalysts, both regenerable and non-regenerable. It contains detailed information on hazardous characteristics of spent and regenerated catalysts. The information forms a basis for determining processing options to make decisions on whether spent catalysts can be either reused on refinery site after regeneration or used as the source of new materials. For non-regenerable spent catalysts, attention is paid to safety and ecological implications of utilizing landfill and other waste handling and storage options to ensure environmental acceptance. As such, this handbook can be used as a benchmark document to develop threshold limits of regulated species. Includes experimental results and testing protocols which serve as a basis for the development of methodologies for the characterization of solid wastes Presents a database which assists researchers in selecting/designing research projects on spent catalysts, i.e., regeneration vs. rejuvenation and metal reclamation Provides the environmental laws, acts, and liabilities to raise awareness in safety and health issues in all aspects of spent catalysts Contains solid waste management procedures specific to hydroprocessing that serve as a model for designing research projects in other solid waste areas







Handbook of Spent Hydroprocessing Catalysts


Book Description

This handbook serves scientists and researchers interested in any aspect of spent hydroprocessing catalysts. Its aim is to assist in the analysis and assessment of refined catalyst byproducts and processing options, to determine whether spent catalysts can be processed into productive resources. For non-regenerable spent catalysts, the book takes into consideration both safety and ecological implications of utilizing landfill and other waste options. Provides comprehensive guidance and assistance to those making decisions on the fate of spent catalysts, radically improving strategic options for refining organisations Offers solutions that maximize procedural, regulatory, safety, and preparedness benefits Contains detailed information on hazardous characteristics of spent and regenerated catalysts with deployment recommendations, and acts as a benchmark document for establishing threshold limits of regulated species as well as for developing procedures for handling spent catalysts to ensure environmental acceptance