Debugging with GDB


Book Description




The Art of Debugging with GDB, DDD, and Eclipse


Book Description

Debugging is crucial to successful software development, but even many experienced programmers find it challenging. Sophisticated debugging tools are available, yet it may be difficult to determine which features are useful in which situations. The Art of Debugging is your guide to making the debugging process more efficient and effective. The Art of Debugging illustrates the use three of the most popular debugging tools on Linux/Unix platforms: GDB, DDD, and Eclipse. The text-command based GDB (the GNU Project Debugger) is included with most distributions. DDD is a popular GUI front end for GDB, while Eclipse provides a complete integrated development environment. In addition to offering specific advice for debugging with each tool, authors Norm Matloff and Pete Salzman cover general strategies for improving the process of finding and fixing coding errors, including how to: –Inspect variables and data structures –Understand segmentation faults and core dumps –Know why your program crashes or throws exceptions –Use features like catchpoints, convenience variables, and artificial arrays –Avoid common debugging pitfalls Real world examples of coding errors help to clarify the authors’ guiding principles, and coverage of complex topics like thread, client-server, GUI, and parallel programming debugging will make you even more proficient. You'll also learn how to prevent errors in the first place with text editors, compilers, error reporting, and static code checkers. Whether you dread the thought of debugging your programs or simply want to improve your current debugging efforts, you'll find a valuable ally in The Art of Debugging.




GDB Pocket Reference


Book Description

Many Linux and Unix developers are familiar with the GNU debugger (GBD), the invaluable open source tool for testing, fixing, and retesting software. And since GDB can be ported to Windows, Microsoft developers and others who use this platform can also take advantage of this amazing free software that allows you to see exactly what's going on inside of a program as it's executing. This new pocket guide gives you a convenient quick reference for using the debugger with several different programming languages, including C, C++, Java, Fortran and Assembly. The GNU debugger is the most useful tool during the testing phase of the software development cycle because it helps you catch bugs in the act. You can see what a program was doing at the moment it crashed, and then readily pinpoint and correct problem code. With the GDB Pocket Reference on hand, the process is quick and painless. The book covers the essentials of using GBD is a testing environment, including how to specify a target for debugging and how to make a program stop on specified conditions. This handy guide also provides details on using the debugger to examine the stack, source files and data to find the cause of program failure-and then explains ways to use GBD to make quick changes to the program for further testing and debugging. The ability to spot a bug in real time with GDB can save you hours of frustration, and having a quick way to refer to GBD's essential functions is key to making the process work. Once you get your hands on the GDB Pocket Reference, you'll never let go!




Debugging with GDB


Book Description

XXX




Hands-On System Programming with Linux


Book Description

Get up and running with system programming concepts in Linux Key FeaturesAcquire insight on Linux system architecture and its programming interfacesGet to grips with core concepts such as process management, signalling and pthreadsPacked with industry best practices and dozens of code examplesBook Description The Linux OS and its embedded and server applications are critical components of today’s software infrastructure in a decentralized, networked universe. The industry's demand for proficient Linux developers is only rising with time. Hands-On System Programming with Linux gives you a solid theoretical base and practical industry-relevant descriptions, and covers the Linux system programming domain. It delves into the art and science of Linux application programming— system architecture, process memory and management, signaling, timers, pthreads, and file IO. This book goes beyond the use API X to do Y approach; it explains the concepts and theories required to understand programming interfaces and design decisions, the tradeoffs made by experienced developers when using them, and the rationale behind them. Troubleshooting tips and techniques are included in the concluding chapter. By the end of this book, you will have gained essential conceptual design knowledge and hands-on experience working with Linux system programming interfaces. What you will learnExplore the theoretical underpinnings of Linux system architectureUnderstand why modern OSes use virtual memory and dynamic memory APIsGet to grips with dynamic memory issues and effectively debug themLearn key concepts and powerful system APIs related to process managementEffectively perform file IO and use signaling and timersDeeply understand multithreading concepts, pthreads APIs, synchronization and schedulingWho this book is for Hands-On System Programming with Linux is for Linux system engineers, programmers, or anyone who wants to go beyond using an API set to understanding the theoretical underpinnings and concepts behind powerful Linux system programming APIs. To get the most out of this book, you should be familiar with Linux at the user-level logging in, using shell via the command line interface, the ability to use tools such as find, grep, and sort. Working knowledge of the C programming language is required. No prior experience with Linux systems programming is assumed.




Mastering Embedded Linux Programming


Book Description

Master the techniques needed to build great, efficient embedded devices on Linux About This Book Discover how to build and configure reliable embedded Linux devices This book has been updated to include Linux 4.9 and Yocto Project 2.2 (Morty) This comprehensive guide covers the remote update of devices in the field and power management Who This Book Is For If you are an engineer who wishes to understand and use Linux in embedded devices, this book is for you. It is also for Linux developers and system programmers who are familiar with embedded systems and want to learn and program the best in class devices. It is appropriate for students studying embedded techniques, for developers implementing embedded Linux devices, and engineers supporting existing Linux devices. What You Will Learn Evaluate the Board Support Packages offered by most manufacturers of a system on chip or embedded module Use Buildroot and the Yocto Project to create embedded Linux systems quickly and efficiently Update IoT devices in the field without compromising security Reduce the power budget of devices to make batteries last longer Interact with the hardware without having to write kernel device drivers Debug devices remotely using GDB, and see how to measure the performance of the systems using powerful tools such as perk, ftrace, and valgrind Find out how to configure Linux as a real-time operating system In Detail Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You'll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you'll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You'll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system. Style and approach This book is an easy-to-follow and pragmatic guide with in-depth analysis of the implementation of embedded devices. It follows the life cycle of a project from inception through to completion, at each stage giving both the theory that underlies the topic and practical step-by-step walkthroughs of an example implementation.




Debugging with GDB


Book Description




Advanced R


Book Description

An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.




Linux Device Drivers


Book Description

This practical guide is for anyone who wants to support computer peripherals under the Linux operating system or who wants to develop new hardware and run it under Linux. It shows step-by-step how to write a driver for character devices, m block devices, and network interfaces, illustrated with examples you can compile and run.




Embedded Linux Primer


Book Description

Up-to-the-Minute, Complete Guidance for Developing Embedded Solutions with Linux Linux has emerged as today’s #1 operating system for embedded products. Christopher Hallinan’s Embedded Linux Primer has proven itself as the definitive real-world guide to building efficient, high-value, embedded systems with Linux. Now, Hallinan has thoroughly updated this highly praised book for the newest Linux kernels, capabilities, tools, and hardware support, including advanced multicore processors. Drawing on more than a decade of embedded Linux experience, Hallinan helps you rapidly climb the learning curve, whether you’re moving from legacy environments or you’re new to embedded programming. Hallinan addresses today’s most important development challenges and demonstrates how to solve the problems you’re most likely to encounter. You’ll learn how to build a modern, efficient embedded Linux development environment, and then utilize it as productively as possible. Hallinan offers up-to-date guidance on everything from kernel configuration and initialization to bootloaders, device drivers to file systems, and BusyBox utilities to real-time configuration and system analysis. This edition adds entirely new chapters on UDEV, USB, and open source build systems. Tour the typical embedded system and development environment and understand its concepts and components. Understand the Linux kernel and userspace initialization processes. Preview bootloaders, with specific emphasis on U-Boot. Configure the Memory Technology Devices (MTD) subsystem to interface with flash (and other) memory devices. Make the most of BusyBox and latest open source development tools. Learn from expanded and updated coverage of kernel debugging. Build and analyze real-time systems with Linux. Learn to configure device files and driver loading with UDEV. Walk through detailed coverage of the USB subsystem. Introduces the latest open source embedded Linux build systems. Reference appendices include U-Boot and BusyBox commands.