Scalar Boson Decays to Tau Leptons


Book Description

This thesis presents a study of the scalar sector in the standard model (SM), as well as various searches for an extended scalar sector in theories beyond the SM (BSM). The first part of the thesis details the search for an SM Higgs boson decaying to taus, and produced by gluon fusion, vector boson fusion, or associated production with a vector boson, leading to evidence for decays of the Higgs boson to taus. In turn, the second part highlights several searches for an extended scalar sector, with scalar boson decays to taus. In all of the analyses presented, at least one scalar boson decays to a pair of taus. The results draw on data collected by the Compact Muon Solenoid (CMS) detector during proton–proton collisions with a center-of-mass energy of 7 or 8 TeV.




Tau Lepton Physics - Proceedings Of The Second Workshop


Book Description

The II International Workshop on Tau Lepton Physics was held in Ohio, USA in September 1992. Its purpose is to gather the experts on tau lepton physics to examine the current understanding of the tau lepton physics and to assess future prospects. A particular emphasis of the Workshop was a detailed examination of the '1-prong problem': the discrepancy between the inclusive measurement of one-charged-particle decay branching ratio and the sum of the exclusive decays. The Workshop also stimulated new ideas on tests of the Standard Model using the third generation lepton and assessed the future prospects of the lepton physics.




Tau Lepton Physics


Book Description




B Decays


Book Description

This 2nd edition is an extensive update of "B Decays?. The revisions are necessary because of the extensive amount of new data and new theoretical ideas. This book reviews what is known about b-quark decays and also looks at what can be learned in the future.The importance of this research area is increasing, as evidenced by the approval of the luminosity upgrade for CESR and the asymmetric B factories at SLAC and KEK, and the possibility of experiments at hadron colliders.The key experimental observations made thus far, measurement of the lifetimes of the different B species, B0-B0 mixing, the discovery of ?Penguin? mediated decays, and the extraction of the CKM matrix elements Vub and Vcb from semileptonic decays, as well as more mundane results, are described in great detail by the experimentalists who have been closely involved with making the measurements. Theoretical progress in understanding b-quark decays using HQET and lattice gauge techniques are described by theorists who have developed and used these techniques.Synthesizing the experimental and theoretical information, several articles discuss the implications for the ?Standard Model? and how further tests can be done using measurements of CP violation in the B system.




Quantum Field Theory and the Standard Model


Book Description

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




Modern Particle Physics


Book Description

"Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book"--




Lepton Dipole Moments


Book Description

This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many of the leading authors in this field, cover both the experimental and theoretical aspects of these topics. Sample Chapter(s). Chapter 1: Historical Introduction to Electric and Mangnetic Moments (367 KB). Contents: Historical Introduction (B L Roberts); Electromagnetic Dipole Moments and New Physics (A Czarnecki & W J Marciano); Lepton g OCo 2 from 1947 to Present (T Kinoshita); Analytic QED Calculations of the Anomalous Magnetic Moment of the Electron (S Laporta & E Remiddi); Measurements of the Electron Magnetic Moment (G Gabrielse); Determining the Fine Structure Constant (G Gabrielse); Helium Fine Structure Theory for the Determination of (K Pachucki & J Sapirstein); Hadronic Vacuum Polarization and the Lepton Anomalous Magnetic Moments (M Davier); The Hadronic Light-by-Light Contribution to a, e (J Prades et al.); General Prescriptions for One-loop Contributions to a e, (K R Lynch); Measurement of the Muon ( g OCo 2) Value (J P Miller et al.); Muon ( g OCo 2) and Physics Beyond the Standard Model (D StAckinger); Probing CP Violation with Electric Dipole Moments (M Pospelov & A Ritz); The Electric Dipole Moment of the Electron (E D Commins & D DeMille); Neutron EDM Experiments (S K Lamoreaux & R Golub); Nuclear Electric Dipole Moments (W C Griffith et al.); EDM Measurements in Storage Rings (B L Roberts et al.); Models of Lepton Flavor Violation (Y Okada); Search for the Charged Lepton-Flavor-Violating Transition Moments l OaAE l OC (Y Kuno). Readership: Researchers and graduate students in particle physics, atomic physics and nuclear physics, as well as experts working in the field




Gauge Theory of Weak Decays


Book Description

"The ultimate question of elementary particle physics is: What is the fundamental Lagrangian of nature surrounding us? The Lagrangian of the SM is very successful in describing nature at the currently available energy range. The discovery of the Higgs boson completed the particle spectrum of the SM and it is another proof of how well the SM works. Nevertheless the SM cannot be the end of the story and it is for sure not the fundamental Lagrangian of nature. The Lagrangian of the SM looses its validity at the latest at the Planck scale where gravitational effects become noticeable.Most physicists think of the SM as an effective theory that has to be replaced by a more fundamental theory above the TeV scale. What the word effective really means will hopefully be clear at later stages of our book. For the time being we will list some problems and open questions of the SM"--




The Physics of the B Factories


Book Description

This comprehensive work thoroughly introduces and reviews the set of results from Belle and BaBar - after more than two decades of independent and complementary work - all the way from the detectors and the analysis tools used, up to the physics results, and the interpretation of these results. The world’s two giant B Factory collaborations, Belle at KEK and BaBar at SLAC, have successfully completed their main mission to discover and quantify CP violation in the decays of B mesons. CP violation is a necessary requirement to distinguish unambiguously between matter and antimatter. The shared primary objective of the two B Factory experiments was to determine the shape of the so-called unitarity triangle, an abstract triangle representing interactions of quarks, the elementary constituents of matter. The area of the triangle is a measure of the amount of CP violation associated with the weak force. Many other measurements have been performed by the B Factories and are also discussed in this work.