Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions


Book Description

One of the goals of artificial intelligence (AI) is creating autonomous agents that must make decisions based on uncertain and incomplete information. The goal is to design rational agents that must take the best action given the information available and their goals. Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions provides an introduction to different types of decision theory techniques, including MDPs, POMDPs, Influence Diagrams, and Reinforcement Learning, and illustrates their application in artificial intelligence. This book provides insights into the advantages and challenges of using decision theory models for developing intelligent systems.




Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies


Book Description

The fields of computer vision and image processing are constantly evolving as new research and applications in these areas emerge. Staying abreast of the most up-to-date developments in this field is necessary in order to promote further research and apply these developments in real-world settings. Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies features timely and informative research on the design and development of computer vision and image processing applications in intelligent agents as well as in multimedia technologies. Covering a diverse set of research in these areas, this publication is ideally designed for use by academicians, technology professionals, students, and researchers interested in uncovering the latest innovations in the field.




Handbook of Research on Manufacturing Process Modeling and Optimization Strategies


Book Description

Recent improvements in business process strategies have allowed more opportunities to attain greater developmental performances. This has led to higher success in day-to-day production and overall competitive advantage. The Handbook of Research on Manufacturing Process Modeling and Optimization Strategies is a pivotal reference source for the latest research on the various manufacturing methodologies and highlights the best optimization approaches to achieve boosted process performance. Featuring extensive coverage on relevant areas such as genetic algorithms, fuzzy set theory, and soft computing techniques, this publication is an ideal resource for researchers, practitioners, academicians, designers, manufacturing engineers, and institutions involved in design and manufacturing projects.




ARTIFICIAL INTELLIGENCE


Book Description

There has been a movement over the years to make machines intelligent. With the advent of modern technology, AI has become the core part of day-to-day life. But it is accentuated to have a book that keeps abreast of all the state-of-the-art concepts (pertaining to AI) in simplified, explicit and elegant way, expounding on ample examples so that the beginners are able to comprehend the subject with ease. The book on Artificial Intelligence, dexterously divided into 21 chapters, fully satisfies all these pressing needs. It is intended to put each and every concept related to intelligent system in front of the readers in the most simplified way so that while understanding the basic concepts, they will develop thought process that can contribute to the building of advanced intelligent systems. Various cardinal landmarks pertaining to the subject such as problem solving, search techniques, intelligent agents, constraint satisfaction problems, knowledge representation, planning, machine learning, natural language processing, pattern recognition, game playing, hybrid and fuzzy systems, neural network-based learning and future work and trends in AI are now under the single umbrella of this book, thereby showing a nice blend of theoretical and practical aspects. With all the latest information incorporated and several pedagogical attributes included, this textbook is an invaluable learning tool for the undergraduate and postgraduate students of computer science and engineering, and information technology. KEY FEATURES • Highlights a clear and concise presentation through adequate study material • Follows a systematic approach to explicate fundamentals as well as recent advances in the area • Presents ample relevant problems in the form of multiple choice questions, concept review questions, critical thinking exercise and project work • Incorporates various case studies for major topics as well as numerous industrial examples




Explainable Agency in Artificial Intelligence


Book Description

This book focuses on a subtopic of explainable AI (XAI) called explainable agency (EA), which involves producing records of decisions made during an agent’s reasoning, summarizing its behavior in human-accessible terms, and providing answers to questions about specific choices and the reasons for them. We distinguish explainable agency from interpretable machine learning (IML), another branch of XAI that focuses on providing insight (typically, for an ML expert) concerning a learned model and its decisions. In contrast, explainable agency typically involves a broader set of AI-enabled techniques, systems, and stakeholders (e.g., end users), where the explanations provided by EA agents are best evaluated in the context of human subject studies. The chapters of this book explore the concept of endowing intelligent agents with explainable agency, which is crucial for agents to be trusted by humans in critical domains such as finance, self-driving vehicles, and military operations. This book presents the work of researchers from a variety of perspectives and describes challenges, recent research results, lessons learned from applications, and recommendations for future research directions in EA. The historical perspectives of explainable agency and the importance of interactivity in explainable systems are also discussed. Ultimately, this book aims to contribute to the successful partnership between humans and AI systems. Features: Contributes to the topic of explainable artificial intelligence (XAI) Focuses on the XAI subtopic of explainable agency Includes an introductory chapter, a survey, and five other original contributions




AI-ML for Decision and Risk Analysis


Book Description

This book explains and illustrates recent developments and advances in decision-making and risk analysis. It demonstrates how artificial intelligence (AI) and machine learning (ML) have not only benefitted from classical decision analysis concepts such as expected utility maximization but have also contributed to making normative decision theory more useful by forcing it to confront realistic complexities. These include skill acquisition, uncertain and time-consuming implementation of intended actions, open-world uncertainties about what might happen next and what consequences actions can have, and learning to cope effectively with uncertain and changing environments. The result is a more robust and implementable technology for AI/ML-assisted decision-making. The book is intended to inform a wide audience in related applied areas and to provide a fun and stimulating resource for students, researchers, and academics in data science and AI-ML, decision analysis, and other closely linked academic fields. It will also appeal to managers, analysts, decision-makers, and policymakers in financial, health and safety, environmental, business, engineering, and security risk management.




Business Recovery in Emerging Markets


Book Description

The book analyzes the recovery process of different industries and sectors from the global health pandemic, as well as its collateral effects. Focusing on emerging markets, it examines the underlying factors that have impeded recovery and how businesses in various sectors have (or have not) responded. The chapters take both a micro and macro approach, surveying the topic from both organizational and national perspectives. Divided into sections on public policy, innovation, and social responsibility, this work explores the parameters of business and economic perspectives for the construction of effective models to pursue an effective recovery. It will appeal to scholars studying how business responds in the new normal.




Artificial Intelligence: Theories, Models and Applications


Book Description

This book constitutes the refereed proceedings of the 5th Hellenic Conference on Artificial Intelligence, SETN 2008, held at Syros, Greece in October 2008. The 27 revised full papers together with 17 revised short papers were carefully reviewed and selected from 76 submissions. The papers address any area of artificial intelligence; particular fields of interest include: Adaptive Systems, AI and Creativity, AI rchitectures, Artificial Life,Autonomous Systems, Data Mining and Knowledge Discovery, Hybrid Intelligent Systems & Methods, Intelligent Agents, Multi-agent Systems, Intelligent Distributed Systems, Intelligent Information Retrieval, Intelligent/Natural Interactivity, Intelligent Virtual Environments, Knowledge Representation and Reasoning, Logic Programming, Knowledge-Based Systems, Machine Learning, Neural Nets, Genetic Algorithms, Natural Language Processing, Planning and Scheduling, Problem Solving, Constraint Satisfaction, Robotics, Machine Vision, Machine Sensing.




Handbook of Collective Intelligence


Book Description

Experts describe the latest research in a rapidly growing multidisciplinary field, the study of groups of individuals acting collectively in ways that seem intelligent. Intelligence does not arise only in individual brains; it also arises in groups of individuals. This is collective intelligence: groups of individuals acting collectively in ways that seem intelligent. In recent years, a new kind of collective intelligence has emerged: interconnected groups of people and computers, collectively doing intelligent things. Today these groups are engaged in tasks that range from writing software to predicting the results of presidential elections. This volume reports on the latest research in the study of collective intelligence, laying out a shared set of research challenges from a variety of disciplinary and methodological perspectives. Taken together, these essays—by leading researchers from such fields as computer science, biology, economics, and psychology—lay the foundation for a new multidisciplinary field. Each essay describes the work on collective intelligence in a particular discipline—for example, economics and the study of markets; biology and research on emergent behavior in ant colonies; human-computer interaction and artificial intelligence; and cognitive psychology and the “wisdom of crowds” effect. Other areas in social science covered include social psychology, organizational theory, law, and communications. Contributors Eytan Adar, Ishani Aggarwal, Yochai Benkler, Michael S. Bernstein, Jeffrey P. Bigham, Jonathan Bragg, Deborah M. Gordon, Benjamin Mako Hill, Christopher H. Lin, Andrew W. Lo, Thomas W. Malone, Mausam, Brent Miller, Aaron Shaw, Mark Steyvers, Daniel S. Weld, Anita Williams Woolley




Building on Smart Cities Skills and Competences


Book Description

This book provides insights on skills required to achieve success in smart cities from a variety of industry and human factors perspectives. It emphasizes the balance between learning skills, technical skills, and domain-specific skills in these industries, with special emphasis given to innovative software development models. The authors note that digital transformation requires complementary measures that are not overtly aimed to support infrastructure investment but are instead directed at promoting entrepreneurship, improving digital skills, engaging citizens, applying new transformation strategies, and developing innovative software. All of the above are considered strategically important, especially for medium-sized cities since that enable them to be more competitive in the global economy.