Book Description
A wide range of applications, such as R, SAS, MATLAB, and SPSS Statistics, provide a huge toolbox of methods to analyze large data and can be used by experts to find patterns and interesting structures in the data. Many of these tools are mainly programming languages, which assumes the analyst has deeper programming skills and an advanced background in IT and mathematics. Since this field is becoming more important, graphic user-interfaced data analysis software is starting to enter the market, providing "drag and drop" mechanisms for career changers and people who are not experts in programming or statistics.One of these easy to handle, data analytics applications is the IBM SPSS Modeler. This book is dedicated to the introduction and explanation of its data analysis power and focused in decision trees. The more important topics are the next: Decision Tree Models General Uses of Tree-Based Analysis C&RT Algorithms CHAID Algorithms QUEST Algorithms C5.0 Algorithms Decision Trees with IM SPSS Modeler Building a Decision Tree with the C5.0 Node Building a decision tree with the CHAID node The C&R Tree node and variable generation The QUEST node-Boosting & Imbalanced data Detection of diabetes-comparison of decision tree nodes Rule set and cross-validation with C5.0 The Auto Classifier Node Building a Stream with the Auto Classifier Node The Auto Classifier Model Nugget Models for credit rating with the Auto Classifier node SVM classifier Interactive decision Trees with IBM SPSS Modeler The Interactive Tree Builder Growing and Pruning the Tree Defining Custom Splits Customizing the Tree View Gains Risks The Growing Directives Generation Filter and Select Nodes Building a Tree Model Directly C&R Tree, CHAID, QUEST, and C 5.0 Models Nuggets Model Nuggets for Boosting, Bagging and Very Large Datasets