Decoding Neural Circuit Structure and Function


Book Description

This book offers representative examples from fly and mouse models to illustrate the ongoing success of the synergistic, state-of-the-art strategy, focusing on the ways it enhances our understanding of sensory processing. The authors focus on sensory systems (vision, olfaction), which are particularly powerful models for probing the development, connectivity, and function of neural circuits, to answer this question: How do individual nerve cells functionally cooperate to guide behavioral responses? Two genetically tractable species, mice and flies, together significantly further our understanding of these processes. Current efforts focus on integrating knowledge gained from three interrelated fields of research: (1) understanding how the fates of different cell types are specified during development, (2) revealing the synaptic connections between identified cell types (“connectomics”) using high-resolution three-dimensional circuit anatomy, and (3) causal testing of how iden tified circuit elements contribute to visual perception and behavior.




Decoding Darkness


Book Description

Working from the intriguing hypothesis that Alzheimer's dementia is the result of a renegade protein-beta amyloid-Tanzi and others set out to find the gene responsible for its production. Decoding Darkness takes us deep into the minds and far-flung labs of many a prominent researcher, offering an intimate view of the high stakes of molecular genetics, the revolution that propels it, the obstacles that threaten to derail it, and the families whose lives are so dependent upon it. Tanzi and Parson ultimately reveal that Alzheimer's, like heart disease, may be effectively treated-even prevented.




The Strategy of the Genes


Book Description

First published in 1957, this essential classic work bridged the gap between analytical and theoretical biology, thus setting the insights of the former in a context which more sensitively reflects the ambiguities surrounding many of its core concepts and objectives. Specifically, these five essays are concerned with some of the major problems of classical biology: the precise character of biological organisation, the processes which generate it, and the specifics of evolution. With regard to these issues, some thinkers suggest that biological organisms are not merely distinguishable from inanimate ‘things’ in terms of complexity, but are in fact radically different qualitatively: they exemplify some constitutive principle which is not elsewhere manifested. It is the desire to bring such ideas into conformity with our understanding of analytical biology which unifies these essays. They explore the contours of a conceptual framework sufficiently wide to embrace all aspects of living systems.




Decoding the Language of Genetics


Book Description

"This is a book about the conceptual language of genetics. There is a need for special words and terms to deal with some of the essential abstractions in genetics; these are the focus of this book. It is intended to help readers with diverse interests and experience to think about genetic analysis in a more sophisticated and creative way."--Publisher information.




From Neurons to Neighborhoods


Book Description

How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.




Fundamentals of Brain Network Analysis


Book Description

Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain




Augmentation of Brain Function: Facts, Fiction and Controversy


Book Description

The Volume II is entitled “Neurostimulation and pharmacological approaches”. This volume describes augmentation approaches, where improvements in brain functions are achieved by modulation of brain circuits with electrical or optical stimulation, or pharmacological agents. Activation of brain circuits with electrical currents is a conventional approach that includes such methods as (i) intracortical microstimulation (ICMS), (ii) transcranial direct current stimulation (tDCS), and (iii) transcranial magnetic stimulation (TMS). tDCS and TMS are often regarded as noninvasive methods. Yet, they may induce long-lasting plastic changes in the brain. This is why some authors consider the term “noninvasive” misleading when used to describe these and other techniques, such as stimulation with transcranial lasers. The volume further discusses the potential of neurostimulation as a research tool in the studies of perception, cognition and behavior. Additionally, a notion is expressed that brain augmentation with stimulation cannot be described as a net zero sum proposition, where brain resources are reallocated in such a way that gains in one function are balanced by costs elsewhere. In recent years, optogenetic methods have received an increased attention, and several articles in Volume II cover different aspects of this technique. While new optogenetic methods are being developed, the classical electrical stimulation has already been utilized in many clinically relevant applications, like the vestibular implant and tactile neuroprosthesis that utilizes ICMS. As a peculiar usage of neurostimulation and pharmacological methods, Volume II includes several articles on augmented memory. Memory prostheses are a popular recent development in the stimulation-based BMIs. For example, in a hippocampal memory prosthesis, memory content is extracted from hippocampal activity using a multiple-input, multiple-output non-linear dynamical model. As to the pharmacological approaches to augmenting memory and cognition, the pros and cons of using nootropic drugs are discussed.




Associations between Reading and Mathematics: Genetic, Brain Imaging, Cognitive and Educational Perspectives


Book Description

Converging evidence demonstrates a strong link between reading and mathematics: multiple cognitive processes are shared between reading and mathematics, including the representation and retrieval of symbolic information, attention, working memory, and cognitive control. Additionally, multiple brain networks are involved in both math and reading, and last, common genetic factors might influence both reading and math. Hence, it comes as no surprise that there are meaningful associations between (aspects of) math and reading abilities. Moreover, comorbidity rates between math learning disabilities (MD) and reading disabilities (RD) are high (up to 66%) and prevalence rate of the comorbid condition is reported to be more common than the prevalence rate of isolated math learning disabilities. Accordingly, the goal of the research topic is to explore the underline mechanisms of this overlap between reading and math. The research topic aims to include the following topics: • Genetics - it has been found that both RD and MD are based on genetic factors and run in families. Moreover, math problem solving shares significant genetic overlap with general cognitive ability and reading decoding, whereas math fluency shares significant genetic overlap with reading fluency and general cognitive ability. Hence, this topic will explore the shared and unique genetic risk factors to RD and MD, In addition to shared and unique genetic influence on reading and math. • Neural perspective - converging evidence from both structural and multiple functional imaging studies, involving a wide range of numerical tasks, points to the intraparietal sulcus (IPS) as a core region that involve in quantity manipulation. However, several additional brain areas, such as frontoparietal and temporoparietal areas were found to be involved in numerical tasks. Individuals with MD show deficits in a distributed, set of brain regions that include the IPS, fusiform gyrus in posterior brain regions and pre frontal cortex regions. Similarly, converging evidence indicate that the left hemisphere regions centered in the fusiform gyrus, temporoparietal cortex, and pre frontal cortex regions are strongly involve in typical reading and present lower activity, connectivity or abnormal structure in RD. Thus, there is a meaningful neural overlap between reading and math. Hence, the authors can submit empirical studies on the role of several of brain regions that are involved in math and reading (commonality and diversity) both in the typical and a-typical development. • Cognitive factors that play role in mathematics and reading, and comorbidity between RD and MD - There is a long lasting debate whether MD and RD originate from unique cognitive mechanisms or not. Multiple cognitive processes are shared between reading and mathematics. Therefore, impairments in any one of domain-general skills could conceivably play an important role in both pure and comorbid conditions. Moreover, it has been suggested that phonological processing has a significant role in some aspects of numerical processing such as retrieval of arithmetical facts. • Education - it will be interesting to look at the effect of interventions that aim to improve reading (such as phonological awareness) and there transfer effect on improving mathematical processing. Alternatively, it will be good to test whether math interventions will improve reading.




Memory Makes the Brain


Book Description

The development of the young brain after birth and the emergence of cognitive capacities, mind, and individuality rest on the maturation of a dense net of synaptic connections between neurons. Memory Makes the Brain describes the dramatic, competitive elimination of surplus synapses that occur in the young, maturing brain -- in a process called synaptic pruning that was discovered by pediatric neurologist Peter Huttenlocher in the 1970's at the University of Chicago. Explaining similarities between developmental pruning and learning processes in the adult brain, neurobiologist Christian Hansel offers a unique perspective on brain adaptation and plasticity throughout lifetime, at times weaving in personal accounts and memories. The cellular plasticity machinery that enables learning is known to be affected in brain developmental disorders such as autism. Memory Makes the Brain explains how both maturation and adult synaptic plasticity are deregulated in autism, and how we begin to trace back autism-typical behavioral abnormalities to such synaptopathies.