The Economics of Continuous-Time Finance


Book Description

An introduction to economic applications of the theory of continuous-time finance that strikes a balance between mathematical rigor and economic interpretation of financial market regularities. This book introduces the economic applications of the theory of continuous-time finance, with the goal of enabling the construction of realistic models, particularly those involving incomplete markets. Indeed, most recent applications of continuous-time finance aim to capture the imperfections and dysfunctions of financial markets—characteristics that became especially apparent during the market turmoil that started in 2008. The book begins by using discrete time to illustrate the basic mechanisms and introduce such notions as completeness, redundant pricing, and no arbitrage. It develops the continuous-time analog of those mechanisms and introduces the powerful tools of stochastic calculus. Going beyond other textbooks, the book then focuses on the study of markets in which some form of incompleteness, volatility, heterogeneity, friction, or behavioral subtlety arises. After presenting solutions methods for control problems and related partial differential equations, the text examines portfolio optimization and equilibrium in incomplete markets, interest rate and fixed-income modeling, and stochastic volatility. Finally, it presents models where investors form different beliefs or suffer frictions, form habits, or have recursive utilities, studying the effects not only on optimal portfolio choices but also on equilibrium, or the price of primitive securities. The book strikes a balance between mathematical rigor and the need for economic interpretation of financial market regularities, although with an emphasis on the latter.




Strategic Asset Allocation


Book Description

Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.




Optimal Portfolios


Book Description

The focus of the book is the construction of optimal investment strategies in a security market model where the prices follow diffusion processes. It begins by presenting the complete Black-Scholes type model and then moves on to incomplete models and models including constraints and transaction costs. The models and methods presented will include the stochastic control method of Merton, the martingale method of Cox-Huang and Karatzas et al., the log optimal method of Cover and Jamshidian, the value-preserving model of Hellwig etc.




Handbook of the Fundamentals of Financial Decision Making


Book Description

This handbook in two parts covers key topics of the theory of financial decision making. Some of the papers discuss real applications or case studies as well. There are a number of new papers that have never been published before especially in Part II.Part I is concerned with Decision Making Under Uncertainty. This includes subsections on Arbitrage, Utility Theory, Risk Aversion and Static Portfolio Theory, and Stochastic Dominance. Part II is concerned with Dynamic Modeling that is the transition for static decision making to multiperiod decision making. The analysis starts with Risk Measures and then discusses Dynamic Portfolio Theory, Tactical Asset Allocation and Asset-Liability Management Using Utility and Goal Based Consumption-Investment Decision Models.A comprehensive set of problems both computational and review and mind expanding with many unsolved problems are in an accompanying problems book. The handbook plus the book of problems form a very strong set of materials for PhD and Masters courses both as the main or as supplementary text in finance theory, financial decision making and portfolio theory. For researchers, it is a valuable resource being an up to date treatment of topics in the classic books on these topics by Johnathan Ingersoll in 1988, and William Ziemba and Raymond Vickson in 1975 (updated 2 nd edition published in 2006).




Dynamic Asset Pricing Theory


Book Description

This is a thoroughly updated edition of Dynamic Asset Pricing Theory, the standard text for doctoral students and researchers on the theory of asset pricing and portfolio selection in multiperiod settings under uncertainty. The asset pricing results are based on the three increasingly restrictive assumptions: absence of arbitrage, single-agent optimality, and equilibrium. These results are unified with two key concepts, state prices and martingales. Technicalities are given relatively little emphasis, so as to draw connections between these concepts and to make plain the similarities between discrete and continuous-time models. Readers will be particularly intrigued by this latest edition's most significant new feature: a chapter on corporate securities that offers alternative approaches to the valuation of corporate debt. Also, while much of the continuous-time portion of the theory is based on Brownian motion, this third edition introduces jumps--for example, those associated with Poisson arrivals--in order to accommodate surprise events such as bond defaults. Applications include term-structure models, derivative valuation, and hedging methods. Numerical methods covered include Monte Carlo simulation and finite-difference solutions for partial differential equations. Each chapter provides extensive problem exercises and notes to the literature. A system of appendixes reviews the necessary mathematical concepts. And references have been updated throughout. With this new edition, Dynamic Asset Pricing Theory remains at the head of the field.




Financial Markets and the Real Economy


Book Description

Financial Markets and the Real Economy reviews the current academic literature on the macroeconomics of finance.




Continuous-Time Asset Pricing Theory


Book Description

Asset pricing theory yields deep insights into crucial market phenomena such as stock market bubbles. Now in a newly revised and updated edition, this textbook guides the reader through this theory and its applications to markets. The new edition features ​new results on state dependent preferences, a characterization of market efficiency and a more general presentation of multiple-factor models using only the assumptions of no arbitrage and no dominance. Taking an innovative approach based on martingales, the book presents advanced techniques of mathematical finance in a business and economics context, covering a range of relevant topics such as derivatives pricing and hedging, systematic risk, portfolio optimization, market efficiency, and equilibrium pricing models. For applications to high dimensional statistics and machine learning, new multi-factor models are given. This new edition integrates suicide trading strategies into the understanding of asset price bubbles, greatly enriching the overall presentation and further strengthening the book’s underlying theme of economic bubbles. Written by a leading expert in risk management, Continuous-Time Asset Pricing Theory is the first textbook on asset pricing theory with a martingale approach. Based on the author’s extensive teaching and research experience on the topic, it is particularly well suited for graduate students in business and economics with a strong mathematical background.




Indifference Pricing


Book Description

This is the first book about the emerging field of utility indifference pricing for valuing derivatives in incomplete markets. René Carmona brings together a who's who of leading experts in the field to provide the definitive introduction for students, scholars, and researchers. Until recently, financial mathematicians and engineers developed pricing and hedging procedures that assumed complete markets. But markets are generally incomplete, and it may be impossible to hedge against all sources of randomness. Indifference Pricing offers cutting-edge procedures developed under more realistic market assumptions. The book begins by introducing the concept of indifference pricing in the simplest possible models of discrete time and finite state spaces where duality theory can be exploited readily. It moves into a more technical discussion of utility indifference pricing for diffusion models, and then addresses problems of optimal design of derivatives by extending the indifference pricing paradigm beyond the realm of utility functions into the realm of dynamic risk measures. Focus then turns to the applications, including portfolio optimization, the pricing of defaultable securities, and weather and commodity derivatives. The book features original mathematical results and an extensive bibliography and indexes. In addition to the editor, the contributors are Pauline Barrieu, Tomasz R. Bielecki, Nicole El Karoui, Robert J. Elliott, Said Hamadène, Vicky Henderson, David Hobson, Aytac Ilhan, Monique Jeanblanc, Mattias Jonsson, Anis Matoussi, Marek Musiela, Ronnie Sircar, John van der Hoek, and Thaleia Zariphopoulou. The first book on utility indifference pricing Explains the fundamentals of indifference pricing, from simple models to the most technical ones Goes beyond utility functions to analyze optimal risk transfer and the theory of dynamic risk measures Covers non-Markovian and partially observed models and applications to portfolio optimization, defaultable securities, static and quadratic hedging, weather derivatives, and commodities Includes extensive bibliography and indexes Provides essential reading for PhD students, researchers, and professionals




Market Liquidity


Book Description

"The process by which securities are traded is very different from the idealized picture of a frictionless and self-equilibrating market offered by the typical finance textbook. This book offers a more accurate and authoritative take on this process. The book starts from the assumption that not everyone is present at all times simultaneously on the market, and that participants have quite diverse information about the security's fundamentals. As a result, the order flow is a complex mix of information and noise, and a consensus price only emerges gradually over time as the trading process evolves and the participants interpret the actions of other traders. Thus, a security's actual transaction price may deviate from its fundamental value, as it would be assessed by a fully informed set of investors. The book takes these deviations seriously, and explains why and how they emerge in the trading process and are eventually eliminated. The authors draw on a vast body of theoretical insights and empirical findings on security price formation that have come to form a well-defined field within financial economics known as "market microstructure." Focusing on liquidity and price discovery, the book analyzes the tension between the two, pointing out that when price-relevant information reaches the market through trading pressure rather than through a public announcement, liquidity may suffer. It also confronts many striking phenomena in securities markets and uses the analytical tools and empirical methods of market microstructure to understand them. These include issues such as why liquidity changes over time and differs across securities, why large trades move prices up or down, and why these price changes are subsequently reversed, and why we observe temporary deviations from asset fair values"--




Financial Asset Pricing Theory


Book Description

The book presents models for the pricing of financial assets such as stocks, bonds, and options. The models are formulated and analyzed using concepts and techniques from mathematics and probability theory. It presents important classic models and some recent 'state-of-the-art' models that outperform the classics.