Doping in III-V Semiconductors


Book Description

This is the first book to describe thoroughly the many facets of doping in compound semiconductors. Equal emphasis is given to the fundamental materials physics and to the technological aspects of doping. The author describes various doping techniques, including doping during epitaxial growth, doping by implantation, and doping by diffusion. The key characteristics of all dopants that have been employed in III-V semiconductors are discussed. In addition, general characteristics of dopants are analyzed, including the electrical activity, saturation, amphotericity, autocompensation, and maximum attainable dopant concentration. Redistribution effects are important in semiconductor microstructures. Linear and non-linear diffusion, different microscopic diffusion mechanisms, surface segregation, surface drift, surface migration, impurity-induced disordering, and the respective physical driving mechanisms are illustrated. Topics related to basic impurity theory include the hydrogenic model for shallow impurities, linear screening, density of states, classical and quantum statistics, the law of mass action, as well as many analytic approximations for the Fermi-Dirac integral for three-, two- and one dimensional systems. The timely topic of highly doped semiconductors, including band tails, impurity bands, bandgap renormalization, the Mott transition, and the Burstein-Moss shift, is discussed as well. Doping is essential in many semiconductor heterostructures including high-mobility selectively doped heterostructures, quantum well and quantum barrier structures, doping superlattice structures and d-doping structures. Technologically important deep levels are summarized, including Fe, Cr, and the DX-center, the EL2 defect, and rare-earth impurities. The properties of deep levels are presented phenomenologically, including emission, capture, Shockley-Read recombination, the Poole-Frenkel effect, lattice relaxation, and other effects. The final chapter is dedicated to the experimental characterization of impurities. This book will be of interest to graduate students, researchers and development engineers in the fields of electrical engineering, materials science, physics, and chemistry working on semiconductors. The book may also be used as a text for graduate courses in electrical engineering and materials science.




Impurities in Semiconductors


Book Description

Although there is a good deal of research concerning semiconductor impurities available, most publications on the subject are very specialized and very theoretical. Until now, the field lacked a text that described the current experimental data, applications, and theory concerning impurities in semiconductor physics. Impurities in Semicondu




Transition Metal Impurities in Semiconductors


Book Description

This book discusses the theory of the electron states of transition metal impurities in semiconductors in connection with the general theory of isoelectronic impurities. It contains brief descriptions of the experimental data available for transition metal impurities belonging to iron, palladium and platinum groups and for rare-earth impurities in elemental semiconductors (III-IV, II-VI and IV-VI compounds) and in several oxide compounds (Ti2, BaTiO3, SrTiO3). Also included are applications of the theory to the optical, electrical and resonance properties of semiconductors doped by the transition metal impurities.The book presents a theory unifying previously proposed ligand-field and band descriptions of transition metal impurities. It describes the theory in the context of the general theory of neutral impurities in semiconductors and demonstrates the capabilities of this description to explain the basic experimental properties of semiconductors doped by transition metal impurities. A detailed discussion of various experimental results and their theoretical interpretation is carried out.This book comprises three parts. The first two parts consider several exactly solvable models and describe numerical techniques. All the models and simulations constitute a general pattern describing transition metal and rare-earth impurities in semiconductors. The final part uses this theory in order to address various experimentally observed properties of these systems.







Properties of Impurity States in Superlattice Semiconductors


Book Description

A NATO workshop on "The Properties of Impurity States in Semiconductor Superlattices" was held at the University of Essex, Colchester, United Kingdom, from September 7 to 11, 1987. Doped semiconductor superlattices not only provide a unique opportunity for studying low dimensional electronic behavior, they can also be custom-designed to exhibit many other fascinating el~ctronic properties. The possibility of using these materials for new and novel devices has further induced many astonishing advances, especially in recent years. The purpose of this workshop was to review both advances in the state of the art and recent results in various areas of semiconductor superlattice research, including: (i) growth and characterization techniques, (ii) deep and shallow im purity states, (iii) quantum well states, and (iv) two-dimensional conduction and other novel electronic properties. This volume consists of all the papers presented at the workshop. Chapters 1-6 are concerned with growth and characterization techniques for superlattice semiconductors. The question of a-layer is also discussed in this section. Chapters 7-15 contain a discussion of various aspects of the impurity states. Chapters 16- 22 are devoted to quantum well states. Finally, two-dimensional conduction and other electronic properties are described in chapters 23-26.




Defects in Semiconductors


Book Description

This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors







Metal Impurities in Silicon-Device Fabrication


Book Description

A discussion of the different mechanisms responsible for contamination together with a survey of their impact on device performance. The author examines the specific properties of main and rare impurities in silicon, as well as the detection methods and requirements in modern technology. Finally, impurity gettering is studied along with modern techniques to determine gettering efficiency. Throughout all of these subjects, the book presents only reliable and up-to-date data so as to provide a thorough review of recent scientific investigations.




Semiconductor Material and Device Characterization


Book Description

This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.




Metal Impurities in Silicon- and Germanium-Based Technologies


Book Description

This book provides a unique review of various aspects of metallic contamination in Si and Ge-based semiconductors. It discusses all of the important metals including their origin during crystal and/or device manufacturing, their fundamental properties, their characterization techniques and their impact on electrical devices’ performance. Several control and possible gettering approaches are addressed. The book offers a valuable reference guide for all researchers and engineers studying advanced and state-of-the-art micro- and nano-electronic semiconductor devices and circuits. Adopting an interdisciplinary approach, it combines perspectives from e.g. material science, defect engineering, device processing, defect and device characterization, and device physics and engineering.