Handbook of Deep Learning in Biomedical Engineering


Book Description

Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography




Artificial Intelligence in Medicine


Book Description

This book constitutes the refereed proceedings of the Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, AIMDM'99, held in Aalborg, Denmark, in June 1999. The 27 full papers and 19 short papers presented in the book together with four invited papers were selected from 90 submissions. The papers are organized in topical sections on guidelines and protocols; decision support systems, knowledge-based systems, and cooperative systems; model-based systems; neural nets and causal probabilistic networks; knowledge representation; temporal reasoning; machine learning; natural language processing; and image processing and computer aided design.




Deep Learning for Medical Image Analysis


Book Description

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache




Artificial Intelligence in Medicine


Book Description

The knowledge-based management of medical acts in NUCLEUS -- Knowledge Acquisition, Representation & Learning -- Knowledge Representation and Modelling in HYBRIKON -- Knowledge Organisation in Medical KBS Construetion -- A Framework for Modular Knowledge Bases in the Domain of Hypertension Diseases -- KAVAS-2: Knowledge Acquisition, Visualisation and Assessment System -- KAVAS's Framework for quality assessment of medical knowledge -- KAVAS's Conditioning of the Induction Algorithm -- Clinical decision-support in the field of TETANUS serology using an associative storage model implemented in LISP -- Model based learning support to knowledge acquisition: A clinical case study -- MODELS FOR MEDICAL KNOWLEDGE REPRESENTATION AND MEDICAL REASONING IN A C.A.I SYSTEM -- Case Based Reasoning in Clinical Evaluation -- Object-oriented mentality: the most suited paradigm for medical knowledge-based systems -- Applications Based on Neural Nets -- Classification of protein patterns using neural networks: pixel based versus feature based approach -- Evaluation of an epiderniological data set as an example of the application of neural networks to the analysis of large medical data sets -- A Neural Network Modular System for Object Classification in Brain MR Images -- A Neural Network Identifies Faces with Morphological Syndromes -- Grading of Gliomas in Stereotactic Biopsies with Neural Networks -- Self Organizing Maps for the Evaluation of High Resolution ECG -- AUTHOR INDEX




Deep Learning in Medical Image Analysis


Book Description

This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.




Artificial Intelligence in Medicine


Book Description

Content Description #Includes bibliographical references and index.




Artificial Intelligence in Medicine


Book Description

This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.




Dealing with Medical Knowledge


Book Description

In a systematic and clear manner, the authors discuss the problems associated with clinical decision making and explore the current methods to solve them. In this monograph, they examine the results of combining the classical control system approach with the symbolic approaches which have been central to developments in artificial intelligence. Well illustrated with case studies, this volume will prove to be an invaluable resource to system scientists, engineers, computer scientists, and members of the medical community.




Current Catalog


Book Description

First multi-year cumulation covers six years: 1965-70.




Encyclopedia of Computer Science and Technology


Book Description

Combining Artificial Neural Networks to Symbolic and Algebraic computation