Deformable Models


Book Description

This book covers the complete spectrum of deformable models, its evolution as an imagery field and its use in many biomedical engineering and clinical application disciplines. It includes level sets, PDEs, curve and surface evolution and their applications in biomedical fields covering both static and motion imagery.




Physics-Based Deformable Models


Book Description

Physics-Based Deformable Models presents a systematic physics-based framework for modeling rigid, articulated, and deformable objects, their interactions with the physical world, and the estimate of their shape and motion from visual data. This book presents a large variety of methods and associated experiments in computer vision, graphics and medical imaging that help the reader better to understand the presented material. In addition, special emphasis has been given to the development of techniques with interactive or close to real-time performance. Physics-Based Deformable Models is suitable as a secondary text for graduate level courses in Computer Graphics, Computational Physics, Computer Vision, Medical Imaging, and Biomedical Engineering. In addition, this book is appropriate as a reference for researchers and practitioners in the above-mentioned fields.




Graphical Simulation of Deformable Models


Book Description

This book covers dynamic simulation of deformable objects, which is one of the most challenging tasks in computer graphics and visualization. It focuses on the simulation of deformable models with anisotropic materials, one of the less common approaches in the existing research. Both physically-based and geometrically-based approaches are examined. The authors start with transversely isotropic materials for the simulation of deformable objects with fibrous structures. Next, they introduce a fiber-field incorporated corotational finite element model (CLFEM) that works directly with a constitutive model of transversely isotropic material. A smooth fiber-field is used to establish the local frames for each element. To introduce deformation simulation for orthotropic materials, an orthotropic deformation controlling frame-field is conceptualized and a frame construction tool is developed for users to define the desired material properties. The orthotropic frame-field is coupled with the CLFEM model to complete an orthotropic deformable model. Finally, the authors present an integrated real-time system for animation of skeletal characters with anisotropic tissues. To solve the problems of volume distortion and high computational costs, a strain-based PBD framework for skeletal animation is explained; natural secondary motion of soft tissues is another benefit. The book is written for those researchers who would like to develop their own algorithms. The key mathematical and computational concepts are presented together with illustrations and working examples. It can also be used as a reference book for graduate students and senior undergraduates in the areas of computer graphics, computer animation, and virtual reality. Academics, researchers, and professionals will find this to be an exceptional resource.




Deformable Models


Book Description

This book covers the complete spectrum of deformable models, its evolution as an imagery field and its use in many biomedical engineering and clinical application disciplines. The book focuses on the core image processing techniques, theory and biomaterials useful to research and industry. Contributors are all pioneers in the field.




Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation


Book Description

This book provides a real-time and knowledge-based fuzzy logic model for soft tissue deformation. The demand for surgical simulation continues to grow, as there is a major bottleneck in surgical simulation designation and every patient is unique. Deformable models, the core of surgical simulation, play a crucial role in surgical simulation designation. Accordingly, this book (1) presents an improved mass spring model to simulate soft tissue deformation for surgery simulation; (2) ensures the accuracy of simulation by redesigning the underlying Mass Spring Model (MSM) for liver deformation, using three different fuzzy knowledge-based approaches to determine the parameters of the MSM; (3) demonstrates how data in Central Processing Unit (CPU) memory can be structured to allow coalescing according to a set of Graphical Processing Unit (GPU)-dependent alignment rules; and (4) implements heterogeneous parallel programming for the distribution of grid threats for Computer Unified Device Architecture (CUDA)-based GPU computing.




Speechreading by Humans and Machines


Book Description

This book is one outcome of the NATO Advanced Studies Institute (ASI) Workshop, "Speechreading by Man and Machine," held at the Chateau de Bonas, Castera-Verduzan (near Auch, France) from August 28 to Septem ber 8, 1995 - the first interdisciplinary meeting devoted the subject of speechreading ("lipreading"). The forty-five attendees from twelve countries covered the gamut of speechreading research, from brain scans of humans processing bi-modal stimuli, to psychophysical experiments and illusions, to statistics of comprehension by the normal and deaf communities, to models of human perception, to computer vision and learning algorithms and hardware for automated speechreading machines. The first week focussed on speechreading by humans, the second week by machines, a general organization that is preserved in this volume. After the in evitable difficulties in clarifying language and terminology across disciplines as diverse as human neurophysiology, audiology, psychology, electrical en gineering, mathematics, and computer science, the participants engaged in lively discussion and debate. We think it is fair to say that there was an atmosphere of excitement and optimism for a field that is both fascinating and potentially lucrative. Of the many general results that can be taken from the workshop, two of the key ones are these: • The ways in which humans employ visual image for speech recogni tion are manifold and complex, and depend upon the talker-perceiver pair, severity and age of onset of any hearing loss, whether the topic of conversation is known or unknown, the level of noise, and so forth.




Handbook of Mathematical Models in Computer Vision


Book Description

Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.




Deformable Models


Book Description

This book covers the complete spectrum of deformable models, its evolution as an imagery field and its use in many biomedical engineering and clinical application disciplines. The book focuses on the core image processing techniques, theory and biomaterials useful to research and industry. Contributors are all pioneers in the field.




Deformable Meshes for Medical Image Segmentation


Book Description

​ Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author’s core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatomical structures, together with thorough evaluations of segmentation accuracy on clinical image data. As compared to related work, these fully automatic pipelines allow for highly accurate segmentation of benchmark image data.​




Articulated Motion and Deformable Objects


Book Description

This book constitutes the refereed proceedings of the 10th International Conference on Articulated Motion and Deformable Objects, AMDO 2018, held in Palma de Mallorca, Spain, in July 2018. The 12 papers presented were carefully reviewed and selected from 26 submissions. The papers address the following topics: advanced computer graphics and immersive videogames; human modeling and animation; human motion analysis and tracking; 3D human reconstruction and recognition; multimodal user interaction and applications; ubiquitous and social computing; design tools; input technology; programming user interfaces; 3D medical deformable models and visualization; deep learning methods for computer vision and graphics; and multibiometric.