Contact, Adhesion and Rupture of Elastic Solids


Book Description

This book, based on the analogy between contact mechanics and fracture mechanics proposed by the author twenty years ago, starts with a treatment of the surface energy and tension of solids and surface thermodynamics. The essential concepts of fracture mechanics are presented with emphasis on the thermodynamic aspects. Readers will find complete analytical results and detailed calculations for cracks submitted to pressure distributions and the Dugdale model. Contact mechanics and the contact and adherence of rough solids are also covered.




Applied Mechanics of Solids


Book Description

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o




Linear and Non-Linear Deformations of Elastic Solids


Book Description

Linear and Non-Linear Deformations of Elastic Solids aims to compile the advances in the field of linear and non-linear elasticity through discussion of advanced topics. Broadly classified into two parts, it includes crack, contact, scattering and wave propagation in linear elastic solids and bending vibration, stability in non-linear elastic solids supported by MATLAB examples. This book is aimed at graduate students and researchers in applied mathematics, solid mechanics, applied mechanics, structural mechanics and includes comprehensive discussion of related analytical/numerical methods.




Understanding Acoustics


Book Description

This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.




Mechanics of Solids


Book Description

An important collection of review papers by internationally recognized experts on the broad area of the mechanics of solids.




Mechanics of Materials 2


Book Description

One of the most important subjects for any student of engineering or materials to master is the behaviour of materials and structures under load. The way in which they react to applied forces, the deflections resulting and the stresses and strains set up in the bodies concerned are all vital considerations when designing a mechanical component such that it will not fail under predicted load during its service lifetime.Building upon the fundamentals established in the introductory volume Mechanics of Materials 1, this book extends the scope of material covered into more complex areas such as unsymmetrical bending, loading and deflection of struts, rings, discs, cylinders plates, diaphragms and thin walled sections. There is a new treatment of the Finite Element Method of analysis, and more advanced topics such as contact and residual stresses, stress concentrations, fatigue, creep and fracture are also covered. Each chapter contains a summary of the essential formulae which are developed in the chapter, and a large number of worked examples which progress in level of difficulty as the principles are enlarged upon. In addition, each chapter concludes with an extensive selection of problems for solution by the student, mostly examination questions from professional and academic bodies, which are graded according to difficulty and furnished with answers at the end.




Material Instabilities in Elastic and Plastic Solids


Book Description

This book collects recent theoretical developments in the area of material instability in elastic and plastic solids along with related analytical and numerical methods and applications. The existing different approaches to instability phenomena in metal single crystals, polycristals and in geomaterials are presented with the emphasis laid on mutual relations and on unifying concepts, including elliptictly loss and the energy criterion. Quasi-static bifurcation, initiation of single or multiple shear bands and post-critical strain localization are examined along with dynamic phenomena as wave propagation, moving shocks, internal snap-through and instability of flutter type. This gives an overview of a variety of material instability problems, methods and applications.




Mechanics for Materials and Technologies


Book Description

This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.







The Mathematics and Mechanics of Biological Growth


Book Description

This monograph presents a general mathematical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods are illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D’Arcy Wentworth Thompson’s 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the problem of growth from a historical perspective is given. Then, basic concepts are introduced within the context of growth in filamentary structures. These ideas are then generalized to surfaces and membranes and eventually to the general case of volumetric growth. The book concludes with a discussion of open problems and outstanding challenges. Thoughtfully written and richly illustrated to be accessible to readers of varying interests and background, the text will appeal to life scientists, biophysicists, biomedical engineers, and applied mathematicians alike.