Deformation Theory of Algebras and Structures and Applications


Book Description

This volume is a result of a meeting which took place in June 1986 at 'll Ciocco" in Italy entitled 'Deformation theory of algebras and structures and applications'. It appears somewhat later than is perhaps desirable for a volume resulting from a summer school. In return it contains a good many results which were not yet available at the time of the meeting. In particular it is now abundantly clear that the Deformation theory of algebras is indeed central to the whole philosophy of deformations/perturbations/stability. This is one of the main results of the 254 page paper below (practically a book in itself) by Gerstenhaber and Shack entitled "Algebraic cohomology and defor mation theory". Two of the main philosphical-methodological pillars on which deformation theory rests are the fol lowing • (Pure) To study a highly complicated object, it is fruitful to study the ways in which it can arise as a limit of a family of simpler objects: "the unraveling of complicated structures" . • (Applied) If a mathematical model is to be applied to the real world there will usually be such things as coefficients which are imperfectly known. Thus it is important to know how the behaviour of a model changes as it is perturbed (deformed).




Deformation Theory of Algebras and Their Diagrams


Book Description

This book brings together both the classical and current aspects of deformation theory. The presentation is mostly self-contained, assuming only basic knowledge of commutative algebra, homological algebra and category theory. In the interest of readability, some technically complicated proofs have been omitted when a suitable reference was available. The relation between the uniform continuity of algebraic maps and topologized tensor products is explained in detail, however, as this subject does not seem to be commonly known and the literature is scarce. The exposition begins by recalling Gerstenhaber's classical theory for associative algebras. The focus then shifts to a homotopy-invariant setup of Maurer-Cartan moduli spaces. As an application, Kontsevich's approach to deformation quantization of Poisson manifolds is reviewed. Then, after a brief introduction to operads, a strongly homotopy Lie algebra governing deformations of (diagrams of) algebras of a given type is described, followed by examples and generalizations.




Deformations of Algebraic Schemes


Book Description

This account of deformation theory in classical algebraic geometry over an algebraically closed field presents for the first time some results previously scattered in the literature, with proofs that are relatively little known, yet relevant to algebraic geometers. Many examples are provided. Most of the algebraic results needed are proved. The style of exposition is kept at a level amenable to graduate students with an average background in algebraic geometry.




Lie Methods in Deformation Theory


Book Description

This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer–Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.




Dialgebras and Related Operads


Book Description

The main object of study of these four papers is the notion of associative dialgebras which are algebras equipped with two associative operations satisfying some more relations of the associative type. This notion is studied from a) the homological point of view: construction of the (co)homology theory with trivial coefficients and general coefficients, b) the operadic point of view: determination of the dual operad, that is the dendriform dialgebras which are strongly related with the planar binary trees, c) the algebraic point of view: Hopf structure and Milnor-Moore type theorem.




Noncommutative Deformation Theory


Book Description

Noncommutative Deformation Theory is aimed at mathematicians and physicists studying the local structure of moduli spaces in algebraic geometry. This book introduces a general theory of noncommutative deformations, with applications to the study of moduli spaces of representations of associative algebras and to quantum theory in physics. An essential part of this theory is the study of obstructions of liftings of representations using generalised (matric) Massey products. Suitable for researchers in algebraic geometry and mathematical physics interested in the workings of noncommutative algebraic geometry, it may also be useful for advanced graduate students in these fields.




A Study in Derived Algebraic Geometry


Book Description

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in other parts of mathematics, most prominently in representation theory. This volume develops deformation theory, Lie theory and the theory of algebroids in the context of derived algebraic geometry. To that end, it introduces the notion of inf-scheme, which is an infinitesimal deformation of a scheme and studies ind-coherent sheaves on such. As an application of the general theory, the six-functor formalism for D-modules in derived geometry is obtained. This volume consists of two parts. The first part introduces the notion of ind-scheme and extends the theory of ind-coherent sheaves to inf-schemes, obtaining the theory of D-modules as an application. The second part establishes the equivalence between formal Lie group(oids) and Lie algebr(oids) in the category of ind-coherent sheaves. This equivalence gives a vast generalization of the equivalence between Lie algebras and formal moduli problems. This theory is applied to study natural filtrations in formal derived geometry generalizing the Hodge filtration.







Hochschild Cohomology for Algebras


Book Description

This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.




Algebraic Structures and Applications


Book Description

This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.