Deformation Theory of Algebras and Structures and Applications


Book Description

This volume is a result of a meeting which took place in June 1986 at 'll Ciocco" in Italy entitled 'Deformation theory of algebras and structures and applications'. It appears somewhat later than is perhaps desirable for a volume resulting from a summer school. In return it contains a good many results which were not yet available at the time of the meeting. In particular it is now abundantly clear that the Deformation theory of algebras is indeed central to the whole philosophy of deformations/perturbations/stability. This is one of the main results of the 254 page paper below (practically a book in itself) by Gerstenhaber and Shack entitled "Algebraic cohomology and defor mation theory". Two of the main philosphical-methodological pillars on which deformation theory rests are the fol lowing • (Pure) To study a highly complicated object, it is fruitful to study the ways in which it can arise as a limit of a family of simpler objects: "the unraveling of complicated structures" . • (Applied) If a mathematical model is to be applied to the real world there will usually be such things as coefficients which are imperfectly known. Thus it is important to know how the behaviour of a model changes as it is perturbed (deformed).




Deformation Theory of Algebras and Their Diagrams


Book Description

This book brings together both the classical and current aspects of deformation theory. The presentation is mostly self-contained, assuming only basic knowledge of commutative algebra, homological algebra and category theory. In the interest of readability, some technically complicated proofs have been omitted when a suitable reference was available. The relation between the uniform continuity of algebraic maps and topologized tensor products is explained in detail, however, as this subject does not seem to be commonly known and the literature is scarce. The exposition begins by recalling Gerstenhaber's classical theory for associative algebras. The focus then shifts to a homotopy-invariant setup of Maurer-Cartan moduli spaces. As an application, Kontsevich's approach to deformation quantization of Poisson manifolds is reviewed. Then, after a brief introduction to operads, a strongly homotopy Lie algebra governing deformations of (diagrams of) algebras of a given type is described, followed by examples and generalizations.




Noncommutative Deformation Theory


Book Description

Noncommutative Deformation Theory is aimed at mathematicians and physicists studying the local structure of moduli spaces in algebraic geometry. This book introduces a general theory of noncommutative deformations, with applications to the study of moduli spaces of representations of associative algebras and to quantum theory in physics. An essential part of this theory is the study of obstructions of liftings of representations using generalised (matric) Massey products. Suitable for researchers in algebraic geometry and mathematical physics interested in the workings of noncommutative algebraic geometry, it may also be useful for advanced graduate students in these fields.




Algebraic Structures and Applications


Book Description

This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.




Hochschild Cohomology for Algebras


Book Description

This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.




Dialgebras and Related Operads


Book Description

The main object of study of these four papers is the notion of associative dialgebras which are algebras equipped with two associative operations satisfying some more relations of the associative type. This notion is studied from a) the homological point of view: construction of the (co)homology theory with trivial coefficients and general coefficients, b) the operadic point of view: determination of the dual operad, that is the dendriform dialgebras which are strongly related with the planar binary trees, c) the algebraic point of view: Hopf structure and Milnor-Moore type theorem.




Geometric and Algebraic Structures in Differential Equations


Book Description

The geometrical theory of nonlinear differential equations originates from classical works by S. Lie and A. Bäcklund. It obtained a new impulse in the sixties when the complete integrability of the Korteweg-de Vries equation was found and it became clear that some basic and quite general geometrical and algebraic structures govern this property of integrability. Nowadays the geometrical and algebraic approach to partial differential equations constitutes a special branch of modern mathematics. In 1993, a workshop on algebra and geometry of differential equations took place at the University of Twente (The Netherlands), where the state-of-the-art of the main problems was fixed. This book contains a collection of invited lectures presented at this workshop. The material presented is of interest to those who work in pure and applied mathematics and especially in mathematical physics.




Differential Geometric Methods In Theoretical Physics - Proceedings Of The Xx International Conference (In 2 Volumes)


Book Description

This proceedings reports on some of the most recent advances on the interaction between Differential Geometry and Theoretical Physics, a very active and exciting area of contemporary research.The papers are grouped into the following four broad categories: Geometric Methods, Noncommutative Geometry, Quantum Gravity and Topological Quantum Field Theory. A few of the topics covered are Chern-Simons Theory and Generalizations, Knot Invariants, Models of 2D Gravity, Quantum Groups and Strings on Black Holes.




Deformation Quantization


Book Description

This book contains eleven refereed research papers on deformation quantization by leading experts in the respective fields. These contributions are based on talks presented on the occasion of the meeting between mathematicians and theoretical physicists held in Strasbourg in May 2001. Topics covered are: star-products over Poisson manifolds, quantization of Hopf algebras, index theorems, globalization and cohomological problems. Both the mathematical and the physical approach ranging from asymptotic quantum electrodynamics to operads and prop theory will be presented. Historical remarks and surveys set the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume will give an overview of a field of research that has seen enourmous acticity in the last years, with new ties to many other areas of mathematics and physics.




L. D. Faddeev's Seminar on Mathematical Physics


Book Description

Professor L. D. Faddeev's seminar at Steklov Mathematical Institute (St. Petersburg, Russia) has a long history of over 30 years of intensive work which shaped modern mathematical physics. This collection, honoring Professor Faddeev's 65th anniversary, has been prepared by his students and colleagues. Topics covered in the volume include classical and quantum integrable systems (both analytic and algebraic aspects), quantum groups and generalizations, quantum field theory, and deformation quantization. Included is a history of the seminar highlighting important developments, such as the invention of the quantum inverse scattering method and of quantum groups. The book will serve nicely as a comprehensive, up-to-date resource on the topic.