Book Description
In this paper the authors examine the degree map of multivalued perturbations of nonlinear operators of monotone type and prove that at a local minimizer of the corresponding Euler functional, this degree equals one.
Author : Sergiu Aizicovici
Publisher : American Mathematical Soc.
Page : 70 pages
File Size : 11,21 MB
Release : 2008
Category : Mathematics
ISBN : 9781470405212
In this paper the authors examine the degree map of multivalued perturbations of nonlinear operators of monotone type and prove that at a local minimizer of the corresponding Euler functional, this degree equals one.
Author : Sergiu Aizicovici
Publisher : American Mathematical Soc.
Page : 84 pages
File Size : 12,72 MB
Release : 2008
Category : Mathematics
ISBN : 0821841920
In this paper the authors examine the degree map of multivalued perturbations of nonlinear operators of monotone type and prove that at a local minimizer of the corresponding Euler functional, this degree equals one.
Author : Nikolaos S. Papageorgiou
Publisher : Springer
Page : 586 pages
File Size : 10,17 MB
Release : 2019-02-26
Category : Mathematics
ISBN : 3030034305
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Author : Marius Junge
Publisher : American Mathematical Soc.
Page : 168 pages
File Size : 30,75 MB
Release : 2010
Category : Mathematics
ISBN : 0821846558
Contains the proof of a noncommutative analogue of the inequality for sums of free random variables over a given von Neumann subalgebra.
Author : Dumitru Motreanu
Publisher : Springer Science & Business Media
Page : 465 pages
File Size : 40,19 MB
Release : 2013-11-19
Category : Mathematics
ISBN : 1461493234
This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.
Author : Simeon Reich
Publisher : American Mathematical Soc.
Page : 290 pages
File Size : 47,18 MB
Release : 2010
Category : Mathematics
ISBN : 0821848348
This volume is the first of two volumes representing leading themes of current research in nonlinear analysis and optimization. The articles are written by prominent researchers in these two areas and bring the readers, advanced graduate students and researchers alike, to the frontline of the vigorous research in these important fields of mathematics. This volume contains articles on nonlinear analysis. Topics covered include the convex feasibility problem, fixed point theory, mathematical biology, Mosco stability, nonexpansive mapping theory, nonlinear partial differential equations, optimal control, the proximal point algorithm and semigroup theory. The companion volume (Contemporary Mathematics, Volume 514) is devoted to optimization. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel). Table of Contents: A. S. Ackleh, K. Deng, and Q. Huang -- Existence-uniqueness results and difference approximations for an amphibian juvenile-adult model; S. Aizicovici, N. S. Papageorgiou, and V. Staicu -- Three nontrivial solutions for $p$-Laplacian Neumann problems with a concave nonlinearity near the origin; V. Barbu -- Optimal stabilizable feedback controller for Navier-Stokes equations; H. H. Bauschke and X. Wang -- Firmly nonexpansive and Kirszbraun-Valentine extensions: A constructive approach via monotone operator theory; R. E. Bruck -- On the random product of orthogonal projections in Hilbert space II; D. Butnariu, E. Resmerita, and S. Sabach -- A Mosco stability theorem for the generalized proximal mapping; A. Cegielski -- Generalized relaxations of nonexpansive operators and convex feasibility problems; Y. Censor and A. Segal -- Sparse string-averaging and split common fixed points; T. Dominguez Benavides and S. Phothi -- Genericity of the fixed point property for reflexive spaces under renormings; K. Goebel and B. Sims -- Mean Lipschitzian mappings; T. Ibaraki and W. Takahashi -- Generalized nonexpansive mappings and a proximal-type algorithm in Banach spaces; W. Kaczor, T. Kuczumow, and N. Michalska -- The common fixed point set of commuting nonexpansive mapping in Cartesian products of weakly compact convex sets; L. Leu'tean -- Nonexpansive iterations in uniformly convex $W$-hyperbolic spaces; G. Lopez, V. Martin-Marquez, and H.-K. Xu -- Halpern's iteration for nonexpansive mappings; J. W. Neuberger -- Lie generators for local semigroups; H.-K. Xu -- An alternative regularization method for nonexpansive mappings with applications. (CONM/513)
Author : Gelu Popescu
Publisher : American Mathematical Soc.
Page : 105 pages
File Size : 36,56 MB
Release : 2009-06-05
Category : Mathematics
ISBN : 0821843966
This paper concerns unitary invariants for $n$-tuples $T:=(T_1,\ldots, T_n)$ of (not necessarily commuting) bounded linear operators on Hilbert spaces. The author introduces a notion of joint numerical radius and works out its basic properties. Multivariable versions of Berger's dilation theorem, Berger-Kato-Stampfli mapping theorem, and Schwarz's lemma from complex analysis are obtained. The author studies the joint (spatial) numerical range of $T$ in connection with several unitary invariants for $n$-tuples of operators such as: right joint spectrum, joint numerical radius, euclidean operator radius, and joint spectral radius. He also proves an analogue of Toeplitz-Hausdorff theorem on the convexity of the spatial numerical range of an operator on a Hilbert space, for the joint numerical range of operators in the noncommutative analytic Toeplitz algebra $F_n^\infty$.
Author : Gelu Popescu
Publisher : American Mathematical Soc.
Page : 137 pages
File Size : 27,1 MB
Release : 2010
Category : Mathematics
ISBN : 0821847104
"Volume 205, number 964 (third of 5 numbers)."
Author : Grard Iooss
Publisher : American Mathematical Soc.
Page : 144 pages
File Size : 35,77 MB
Release : 2009-06-05
Category : Science
ISBN : 0821843826
The authors consider doubly-periodic travelling waves at the surface of an infinitely deep perfect fluid, only subjected to gravity $g$ and resulting from the nonlinear interaction of two simply periodic travelling waves making an angle $2\theta$ between them. Denoting by $\mu =gL/c^{2}$ the dimensionless bifurcation parameter ( $L$ is the wave length along the direction of the travelling wave and $c$ is the velocity of the wave), bifurcation occurs for $\mu = \cos \theta$. For non-resonant cases, we first give a large family of formal three-dimensional gravity travelling waves, in the form of an expansion in powers of the amplitudes of two basic travelling waves. ``Diamond waves'' are a particular case of such waves, when they are symmetric with respect to the direction of propagation. The main object of the paper is the proof of existence of such symmetric waves having the above mentioned asymptotic expansion. Due to the occurence of small divisors, the main difficulty is the inversion of the linearized operator at a non trivial point, for applying the Nash Moser theorem. This operator is the sum of a second order differentiation along a certain direction, and an integro-differential operator of first order, both depending periodically of coordinates. It is shown that for almost all angles $\theta$, the 3-dimensional travelling waves bifurcate for a set of ``good'' values of the bifurcation parameter having asymptotically a full measure near the bifurcation curve in the parameter plane $(\theta,\mu ).$
Author : Marco Bramanti
Publisher : American Mathematical Soc.
Page : 136 pages
File Size : 40,84 MB
Release : 2010
Category : Mathematics
ISBN : 0821849034
"March 2010, Volume 204, number 961 (end of volume)."