Heat Deliverability of Homogeneous Geothermal Reservoirs


Book Description

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.




Deliverability and Its Effect on Geothermal Power Costs


Book Description

The deliverability of liquid-dominated geothermal reservoirs is presented in terms of reservoir performance, and wellbore performance. Water influx modeling is used to match the performance of Wairakei in New Zealand, arid Ahuachapan in El Salvador. The inflow performance is given in terms of a linear productivity index for liquid-only flow, and a solution-gas drive relationship for two-phase flow. A 9-5/8'' production well is assumed, flowing 250 C water from 900 m depth, with a wellhead pressure of 100 psia. A Geothermal Development Model, that couples reservoir deliverability and power plant performance, and assigns costs to both, is used to illustrate how the development cost of geothermal electric power projects can be estimated.







Geothermal Reservoir Engineering


Book Description

During the oil crisis of 1973, we suddenly became aware that fossil fuel resources are limited and will be exhausted soon if new alternatives are not put into use immediately. Conservation measures and extensive research on new sources of energy has eased the demand on fossil fuels, especially crude oil. Geothermal energy as an alternative; source had its share in this devel opment and electricity producing capacity increased from 700 to 4700 MWe during 1970 to 1985. Geothermal reservoir engineering emerged as an impor tant field in the assessment of geothermal sources. During the 25 years of its development, several areas were identified that needed further at tention for the correct description and interpretation of reservoir be havior. This fact as accepted by all operators is vital for the steady and continuous operation of power plants. During this NATO ASI, a detailed review of theory and field case his tories on geothermal reservoir engineering was presented. In understanding .the reservoir, conceptual models, natural state models, well bore measure ments, transient and tracer testing provide data which are indispensable. They are powerful tools in understanding reservoir behavior provided we know how to interpret them. During lectures the theory and practical applications of these interpretive methods were discussed.




Geothermal Energy Systems


Book Description

Geothermal Energy Systems The book encounters basic knowledge about geothermal technology for the utilization of geothermal resources. The book helps to understand the basic geology needed for the utilization of geothermal energy, shows up the practice to make access to geothermal reservoirs by drilling and the engineering of the reservoir by enhancing methods. The book describes the technology to make use of the Earth?s heat for direct use, power, and/or chill and gives boundary conditions for its economic and environmental utilization. A special focus is made on enhanced or engineered geothermal systems (EGS) which are based on concepts which bring a priori less productive reservoirs to an economic use. From the contents: Reservoir Definition Exploration Methods Drilling into Geothermal Reservoirs Enhancing Geothermal Reservoirs Geothermal Reservoir Simulation Energetic Use of EGS Reservoirs Economic Performance and Environmental Assessment Deployment of Enhanced Geothermal Systems plants and CO2-mitigation







Effects of Water Injection Into Fractured Geothermal Reservoirs


Book Description

Reinjection of water into fractured geothermal reservoirs holds potential both for improvement and degradation of total energy recovery. The replacement of reservoir fluid can mean support of placement of reservoir pressures and also more efficient thermal energy recovery, but at the same time the premature invasion of reinjected water back into production wells through high permeability fractures can reduce discharge enthalpy and hence deliverability and useful energy output. Increases in reservoir pressure and maintenance of field output have been observed in operating fields, but unfortunately so too have premature thermal breakthroughs. The design of reinjection schemes, therefore, requires careful investigation into the likely effects, using field experimentation. This paper summarizes field experience with reinjection around the world, with the intention of elucidating characteristics of possible problems. The results summarized in this paper fall into three categories of interest: permeability changes dye to injection (both increases and decreases); the path followed by injected water (as indicated by tracer tests); and the thermal and hydraulic influences of injection on the reinjection well itself and on surrounding producers. [DJE-2005].




Geothermal Energy Update


Book Description




Geothermal Reservoir Engineering


Book Description

Geothermal Reservoir Engineering offers a comprehensive account of geothermal reservoir engineering and a guide to the state-of-the-art technology, with emphasis on practicality. Topics covered include well completion and warm-up, flow testing, and field monitoring and management. A case study of a geothermal well in New Zealand is also presented. Comprised of 10 chapters, this book opens with an overview of geothermal reservoirs and the development of geothermal reservoir engineering as a discipline. The following chapters focus on conceptual models of geothermal fields; simple models that illustrate some of the processes taking place in geothermal reservoirs under exploitation; measurements in a well from spudding-in up to first discharge; and flow measurement. The next chapter provides a case history of one well in the Broadlands Geothermal Field in New Zealand, with particular reference to its drilling, measurement, discharge, and data analysis/interpretation. The changes that have occurred in exploited geothermal fields are also reviewed. The final chapter considers three major problems of geothermal reservoir engineering: rapid entry of external cooler water, or return of reinjected water, in fractured reservoirs; the effects of exploitation on natural discharges; and subsidence. This monograph serves as both a text for students and a manual for working professionals in the field of geothermal reservoir engineering. It will also be of interest to engineers and scientists of other disciplines.