Denoising of Photographic Images and Video


Book Description

This unique text/reference presents a detailed review of noise removal for photographs and video. An international selection of expert contributors provide their insights into the fundamental challenges that remain in the field of denoising, examining how to properly model noise in real scenarios, how to tailor denoising algorithms to these models, and how to evaluate the results in a way that is consistent with perceived image quality. The book offers comprehensive coverage from problem formulation to the evaluation of denoising methods, from historical perspectives to state-of-the-art algorithms, and from fast real-time techniques that can be implemented in-camera to powerful and computationally intensive methods for off-line processing. Topics and features: describes the basic methods for the analysis of signal-dependent and correlated noise, and the key concepts underlying sparsity-based image denoising algorithms; reviews the most successful variational approaches for image reconstruction, and introduces convolutional neural network-based denoising methods; provides an overview of the use of Gaussian priors for patch-based image denoising, and examines the potential of internal denoising; discusses selection and estimation strategies for patch-based video denoising, and explores how noise enters the imaging pipeline; surveys the properties of real camera noise, and outlines a fast approximation of nonlocal means filtering; proposes routes to improving denoising results via indirectly denoising a transform of the image, considering the right noise model and taking into account the perceived quality of the outputs. This concise and clearly written volume will be of great value to researchers and professionals working in image processing and computer vision. The book will also serve as an accessible reference for advanced undergraduate and graduate students in computer science, applied mathematics, and related fields. "The relentless quest for higher image resolution, greater ISO sensitivity, faster frame rates and smaller imaging sensors in digital imaging and videography has demanded unprecedented innovation and improvement in noise reduction technologies. This book provides a comprehensive treatment of all aspects of image noise including noise modelling, state of the art noise reduction technologies and visual perception and quantitative evaluation of noise.” Geoff Woolfe, Former President of The Society for Imaging Science and Technology. "This book on denoising of photographic images and video is the most comprehensive and up-to-date account of this deep and classic problem of image processing. The progress on its solution is being spectacular. This volume therefore is a must read for all engineers and researchers concerned with image and video quality." Jean-Michel Morel, Professor at Ecole Normale Supérieure de Cachan, France.




The Essential Guide to Image Processing


Book Description

A complete introduction to the basic and intermediate concepts of image processing from the leading people in the field Up-to-date content, including statistical modeling of natural, anistropic diffusion, image quality and the latest developments in JPEG 2000 This comprehensive and state-of-the art approach to image processing gives engineers and students a thorough introduction, and includes full coverage of key applications: image watermarking, fingerprint recognition, face recognition and iris recognition and medical imaging. "This book combines basic image processing techniques with some of the most advanced procedures. Introductory chapters dedicated to general principles are presented alongside detailed application-orientated ones. As a result it is suitably adapted for different classes of readers, ranging from Master to PhD students and beyond." – Prof. Jean-Philippe Thiran, EPFL, Lausanne, Switzerland "Al Bovik’s compendium proceeds systematically from fundamentals to today’s research frontiers. Professor Bovik, himself a highly respected leader in the field, has invited an all-star team of contributors. Students, researchers, and practitioners of image processing alike should benefit from the Essential Guide." – Prof. Bernd Girod, Stanford University, USA "This book is informative, easy to read with plenty of examples, and allows great flexibility in tailoring a course on image processing or analysis." – Prof. Pamela Cosman, University of California, San Diego, USA A complete and modern introduction to the basic and intermediate concepts of image processing – edited and written by the leading people in the field An essential reference for all types of engineers working on image processing applications Up-to-date content, including statistical modelling of natural, anisotropic diffusion, image quality and the latest developments in JPEG 2000




Computational Photography


Book Description

Computational photography refers broadly to imaging techniques that enhance or extend the capabilities of digital photography. This new and rapidly developing research field has evolved from computer vision, image processing, computer graphics and applied optics—and numerous commercial products capitalizing on its principles have already appeared in diverse market applications, due to the gradual migration of computational algorithms from computers to imaging devices and software. Computational Photography: Methods and Applications provides a strong, fundamental understanding of theory and methods, and a foundation upon which to build solutions for many of today's most interesting and challenging computational imaging problems. Elucidating cutting-edge advances and applications in digital imaging, camera image processing, and computational photography, with a focus on related research challenges, this book: Describes single capture image fusion technology for consumer digital cameras Discusses the steps in a camera image processing pipeline, such as visual data compression, color correction and enhancement, denoising, demosaicking, super-resolution reconstruction, deblurring, and high dynamic range imaging Covers shadow detection for surveillance applications, camera-driven document rectification, bilateral filtering and its applications, and painterly rendering of digital images Presents machine-learning methods for automatic image colorization and digital face beautification Explores light field acquisition and processing, space-time light field rendering, and dynamic view synthesis with an array of cameras Because of the urgent challenges associated with emerging digital camera applications, image processing methods for computational photography are of paramount importance to research and development in the imaging community. Presenting the work of leading experts, and edited by a renowned authority in digital color imaging and camera image processing, this book considers the rapid developments in this area and addresses very particular research and application problems. It is ideal as a stand-alone professional reference for design and implementation of digital image and video processing tasks, and it can also be used to support graduate courses in computer vision, digital imaging, visual data processing, and computer graphics, among others.




Computing and Data Science


Book Description

This volume constitutes selected papers presented at the Third International Conference on Computing and Data Science, CONF-CDS 2021, held online in August 2021. The 22 full papers 9 short papers presented in this volume were thoroughly reviewed and selected from the 85 qualified submissions. They are organized in topical sections on advances in deep learning; algorithms in machine learning and statistics; advances in natural language processing.




Computer Vision – ECCV 2020


Book Description

The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.




Inpainting and Denoising Challenges


Book Description

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapters present results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting.




Image Processing and Analysis with Graphs


Book Description

Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.




Digital Photography for Next to Nothing


Book Description

Take photos like a pro without breaking the bank by using FREE and nearly FREE software and hardware explained in this book. Get professional looking shots from a low-cost camera Save money by building your own lighting rigs, tripods, monopods and stabilisers for next to nothing Learn how to use older lenses on modern digital cameras, and make your own macro lens, lens hoods, flash diffusers, flash concentrators, decorative Bokeh effect lenses and more Use dozens of FREE and low cost photo applications for processing, viewing, cataloguing, editing, creating HDR, and photo stitching Build powerful photography processing and editing suites with free software and plugins that go head to head with expensive tools like Adobe Photoshop and Lightroom




Handbook of Image and Video Processing


Book Description

55% new material in the latest edition of this "must-have for students and practitioners of image & video processing!This Handbook is intended to serve as the basic reference point on image and video processing, in the field, in the research laboratory, and in the classroom. Each chapter has been written by carefully selected, distinguished experts specializing in that topic and carefully reviewed by the Editor, Al Bovik, ensuring that the greatest depth of understanding be communicated to the reader. Coverage includes introductory, intermediate and advanced topics and as such, this book serves equally well as classroom textbook as reference resource. • Provides practicing engineers and students with a highly accessible resource for learning and using image/video processing theory and algorithms • Includes a new chapter on image processing education, which should prove invaluable for those developing or modifying their curricula • Covers the various image and video processing standards that exist and are emerging, driving today's explosive industry • Offers an understanding of what images are, how they are modeled, and gives an introduction to how they are perceived • Introduces the necessary, practical background to allow engineering students to acquire and process their own digital image or video data • Culminates with a diverse set of applications chapters, covered in sufficient depth to serve as extensible models to the reader's own potential applications About the Editor... Al Bovik is the Cullen Trust for Higher Education Endowed Professor at The University of Texas at Austin, where he is the Director of the Laboratory for Image and Video Engineering (LIVE). He has published over 400 technical articles in the general area of image and video processing and holds two U.S. patents. Dr. Bovik was Distinguished Lecturer of the IEEE Signal Processing Society (2000), received the IEEE Signal Processing Society Meritorious Service Award (1998), the IEEE Third Millennium Medal (2000), and twice was a two-time Honorable Mention winner of the international Pattern Recognition Society Award. He is a Fellow of the IEEE, was Editor-in-Chief, of the IEEE Transactions on Image Processing (1996-2002), has served on and continues to serve on many other professional boards and panels, and was the Founding General Chairman of the IEEE International Conference on Image Processing which was held in Austin, Texas in 1994.* No other resource for image and video processing contains the same breadth of up-to-date coverage* Each chapter written by one or several of the top experts working in that area* Includes all essential mathematics, techniques, and algorithms for every type of image and video processing used by electrical engineers, computer scientists, internet developers, bioengineers, and scientists in various, image-intensive disciplines




Computer Vision – ACCV 2022


Book Description

The 7-volume set of LNCS 13841-13847 constitutes the proceedings of the 16th Asian Conference on Computer Vision, ACCV 2022, held in Macao, China, December 2022. The total of 277 contributions included in the proceedings set was carefully reviewed and selected from 836 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; optimization methods; Part II: applications of computer vision, vision for X; computational photography, sensing, and display; Part III: low-level vision, image processing; Part IV: face and gesture; pose and action; video analysis and event recognition; vision and language; biometrics; Part V: recognition: feature detection, indexing, matching, and shape representation; datasets and performance analysis; Part VI: biomedical image analysis; deep learning for computer vision; Part VII: generative models for computer vision; segmentation and grouping; motion and tracking; document image analysis; big data, large scale methods.