Density Waves In Solids


Book Description

?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.







DENSITY WAVES IN SOLIDS


Book Description




Charge Density Waves in Solids


Book Description

The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics. The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop. The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an examination of the possible role of solitons in incommensurate charge density wave systems is given. A number of ways to describe charge density waves theoretically, using computer simulations as well as microscopical models, are presented by a truely international board of authors.




Density Waves In Solids


Book Description

?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.













Time Resolved Dynamics of Charge Density Waves in Solids


Book Description

Charge density wave (CDW) is a periodic charge modulation in a metal, induced by electron-phonon or electron-electron interaction, which breaks the translational symmetry of the underlying electron gas. The charge density wave order is ubiquitous among condensed matter systems, and its equilibrium properties have been well characterized by static probes, such as X-ray scattering. However, little is known about their nonequilibrium properties following photoexcitation. In this thesis, we use time resolved optical measurements to characterize the nonequilibrium dynamics of charge density wave systems. In the time resolved optical experiments in this work, an ultrashort (




Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals


Book Description

Modulated crystals have been intensively investigated over the past several years and it is now evident that an understanding of their crystallography and microstructure is fundamental to the elucidation of the physical properties and phase transitions in these materials. This book brings together for the first time the crystallographic descriptions and experimental methods for the structural and microstructural analysis of modulated crystals as described by well-known researchers in the various areas. The emphasis is on charge density wave modulations, and the detailed analysis of the prototypical NbTe4/TaTe4 system gives practical applications of the methods. Scanning Tunnelling Microscopy is a new technique providing significant new insights into atomic scale details of the modulations' structures and a chapter on this method is included.