Reliability and Availability Engineering


Book Description

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.







Dependability Engineering


Book Description

The new technology and system communication advances are being employed in any system, being more complex. The system dependability considers the technical complexity, size, and interdependency of the system. The stochastic characteristic together with the complexity of the systems as dependability requires to be under control the Reliability, Availability, Maintainability, and Safety (RAMS). The dependability contemplates, therefore, the faults/failures, downtimes, stoppages, worker errors, etc. Dependability also refers to emergent properties, i.e., properties generated indirectly from other systems by the system analyzed. Dependability, understood as general description of system performance, requires advanced analytics that are considered in this book. Dependability management and engineering are covered with case studies and best practices. The diversity of the issues will be covered from algorithms, mathematical models, and software engineering, by design methodologies and technical or practical solutions. This book intends to provide the reader with a comprehensive overview of the current state of the art, case studies, hardware and software solutions, analytics, and data science in dependability engineering.




Fundamentals of Dependable Computing for Software Engineers


Book Description

Fundamentals of Dependable Computing for Software Engineers presents the essential elements of computer system dependability. The book describes a comprehensive dependability-engineering process and explains the roles of software and software engineers in computer system dependability. Readers will learn: Why dependability matters What it means for a system to be dependable How to build a dependable software system How to assess whether a software system is adequately dependable The author focuses on the actions needed to reduce the rate of failure to an acceptable level, covering material essential for engineers developing systems with extreme consequences of failure, such as safety-critical systems, security-critical systems, and critical infrastructure systems. The text explores the systems engineering aspects of dependability and provides a framework for engineers to reason and make decisions about software and its dependability. It also offers a comprehensive approach to achieve software dependability and includes a bibliography of the most relevant literature. Emphasizing the software engineering elements of dependability, this book helps software and computer engineers in fields requiring ultra-high levels of dependability, such as avionics, medical devices, automotive electronics, weapon systems, and advanced information systems, construct software systems that are dependable and within budget and time constraints.




Reliability in Automotive and Mechanical Engineering


Book Description

Defects generate a great economic problem for suppliers who are faced with increased duties. Customers expect increased efficiency and dependability of technical product of - also growing - complexity. The authors give an introduction to a theory of dependability for engineers. The book may serve as a reference book as well, enhancing the knowledge of the specialists and giving a lot of theoretical background and information, especially on the dependability analysis of whole systems.




Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design


Book Description

This handbook studies the combination of various methods of designing for reliability, availability, maintainability and safety, as well as the latest techniques in probability and possibility modeling, mathematical algorithmic modeling, evolutionary algorithmic modeling, symbolic logic modeling, artificial intelligence modeling and object-oriented computer modeling.




Cognitive Dependability Engineering


Book Description

The work is a context-oriented analysis and synthesis of complex engineered systems to ensure continuous and safe operations under conditions of uncertainty. The book is divided in four parts, the first one comprises an overview of the development of systems engineering: starting with basics of Systems Science and Single Systems Engineering, through System of Systems Engineering to Cognitive Systems Engineering. The Cognitive Systems Engineering model was based on the concept of imperfect knowledge acquisition and management. The second part shows the evolutionary character of the dependability concept over the last fifty years. Beginning from simple models based on the classical probability theory, through the concepts of tolerating faults, as well as resilience engineering, we come to the assumptions of Cognitive Dependability Engineering (CDE), based on the concept of continuous smart operation, both under normal and abnormal conditions. The subject of the next part is analysis and synthesis of Cyber-Physical-Social (CPS) Systems. The methodology consists of the following steps: modeling CPS systems' structure, simulating their behavior in changing conditions and in situations of disruptions, and finally assessing the dependability of the entire system based on CDE. The last part of the work answers the question of how to deal with risks in CPS systems in situations of high level of uncertainty. The concept of a Cognitive Digital Twin was introduced to support the process of solving complex problems by experts, and on this basis a framework for cognitive dependability based problemsolving in CPS Systems operating under deep uncertainty was developed. The possibilities and purposefulness of using this framework have been demonstrated with three practical examples of disasters that have happened in the past and have been thoroughly analyzed.




Reliability Engineering


Book Description

Over the last 50 years, the theory and the methods of reliability analysis have developed significantly. Therefore, it is very important to the reliability specialist to be informed of each reliability measure. This book will provide historical developments, current advancements, applications, numerous examples, and many case studies to bring the reader up-to-date with the advancements in this area. It covers reliability engineering in different branches, includes applications to reliability engineering practice, provides numerous examples to illustrate the theoretical results, and offers case studies along with real-world examples. This book is useful to engineering students, research scientist, and practitioners working in the field of reliability.




Reliability Engineering


Book Description

An Integrated Approach to Product Development Reliability Engineering presents an integrated approach to the design, engineering, and management of reliability activities throughout the life cycle of a product, including concept, research and development, design, manufacturing, assembly, sales, and service. Containing illustrative guides that include worked problems, numerical examples, homework problems, a solutions manual, and class-tested materials, it demonstrates to product development and manufacturing professionals how to distribute key reliability practices throughout an organization. The authors explain how to integrate reliability methods and techniques in the Six Sigma process and Design for Six Sigma (DFSS). They also discuss relationships between warranty and reliability, as well as legal and liability issues. Other topics covered include: Reliability engineering in the 21st Century Probability life distributions for reliability analysis Process control and process capability Failure modes, mechanisms, and effects analysis Health monitoring and prognostics Reliability tests and reliability estimation Reliability Engineering provides a comprehensive list of references on the topics covered in each chapter. It is an invaluable resource for those interested in gaining fundamental knowledge of the practical aspects of reliability in design, manufacturing, and testing. In addition, it is useful for implementation and management of reliability programs.




Practical Reliability Engineering


Book Description

This classic textbook/reference contains a complete integration of the processes which influence quality and reliability in product specification, design, test, manufacture and support. Provides a step-by-step explanation of proven techniques for the development and production of reliable engineering equipment as well as details of the highly regarded work of Taguchi and Shainin. New to this edition: over 75 pages of self-assessment questions plus a revised bibliography and references. The book fulfills the requirements of the qualifying examinations in reliability engineering of the Institute of Quality Assurance, UK and the American Society of Quality Control.