European Congress of Mathematics


Book Description

This is the first volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: R. Ahlswede, V. Bach, V. Baladi, J. Bruna, N. Burq, X. Cabré, P.J. Cameron, Z. Chatzidakis, C. Ciliberto, G. Dal Maso, J. Denef, R. Dijkgraaf, B. Fantechi, H. Föllmer, A.B. Goncharov, A. Grigor'yan, M. Harris, R. Iturriaga, K. Johansson, K. Khanin, P. Koskela, H.W. Lenstra, Jr., F. Loeser, Y.I. Manin, N.S. Manton, Y. Meyer, I. Moerdijk, E.M. Opdam, T. Peternell, B.M.A.G. Piette, A. Reznikov, H. Schlichtkrull, B. Schmidt, K. Schmidt, C. Simó, B. Tóth, E. van den Ban, M.-F. Vignéras, O. Viro.




Topics in Algebraic Geometry and Geometric Modeling


Book Description

Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture. The NSF sponsored the four-day ''Vilnius Workshop on Algebraic Geometry and Geometric Modeling'', which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, ''On the determination of the degree of an equations obtained by elimination'', which foreshadows the modern application of mixed volumes in algebraic geometry. The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.




Analysis Meets Geometry


Book Description

This book is dedicated to the memory of Mikael Passare, an outstanding Swedish mathematician who devoted his life to developing the theory of analytic functions in several complex variables and exploring geometric ideas first-hand. It includes several papers describing Mikael’s life as well as his contributions to mathematics, written by friends of Mikael’s who share his attitude and passion for science. A major section of the book presents original research articles that further develop Mikael’s ideas and which were written by his former students and co-authors. All these mathematicians work at the interface of analysis and geometry, and Mikael’s impact on their research cannot be underestimated. Most of the contributors were invited speakers at the conference organized at Stockholm University in his honor. This book is an attempt to express our gratitude towards this great mathematician, who left us full of energy and new creative mathematical ideas.




Perspectives in Analysis, Geometry, and Topology


Book Description

The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.




Singular Algebraic Curves


Book Description

Singular algebraic curves have been in the focus of study in algebraic geometry from the very beginning, and till now remain a subject of an active research related to many modern developments in algebraic geometry, symplectic geometry, and tropical geometry. The monograph suggests a unified approach to the geometry of singular algebraic curves on algebraic surfaces and their families, which applies to arbitrary singularities, allows one to treat all main questions concerning the geometry of equisingular families of curves, and, finally, leads to results which can be viewed as the best possible in a reasonable sense. Various methods of the cohomology vanishing theory as well as the patchworking construction with its modifications will be of a special interest for experts in algebraic geometry and singularity theory. The introductory chapters on zero-dimensional schemes and global deformation theory can well serve as a material for special courses and seminars for graduate and post-graduate students.Geometry in general plays a leading role in modern mathematics, and algebraic geometry is the most advanced area of research in geometry. In turn, algebraic curves for more than one century have been the central subject of algebraic geometry both in fundamental theoretic questions and in applications to other fields of mathematics and mathematical physics. Particularly, the local and global study of singular algebraic curves involves a variety of methods and deep ideas from geometry, analysis, algebra, combinatorics and suggests a number of hard classical and newly appeared problems which inspire further development in this research area.




Tropical Algebraic Geometry


Book Description

These notes present a polished introduction to tropical geometry and contain some applications of this rapidly developing and attractive subject. It consists of three chapters which complete each other and give a possibility for non-specialists to make the first steps in the subject which is not yet well represented in the literature. The notes are based on a seminar at the Mathematical Research Center in Oberwolfach in October 2004. The intended audience is graduate, post-graduate, and Ph.D. students as well as established researchers in mathematics.




Different Faces of Geometry


Book Description

Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: Amoebas and Tropical Geometry Convex Geometry and Asymptotic Geometric Analysis Differential Topology of 4-Manifolds 3-Dimensional Contact Geometry Floer Homology and Low-Dimensional Topology Kähler Geometry Lagrangian and Special Lagrangian Submanifolds Refined Seiberg-Witten Invariants. These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsváth (USA) and Z. Szabó (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). "One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsváth and Szabó). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun. Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kähler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the "11/8 conjecture". LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even "well-known" 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the "geometry" is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra. The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems." - From the Preface by the Editors




Algebraic and Combinatorial Aspects of Tropical Geometry


Book Description

This volume contains the proceedings of the CIEM workshop on Tropical Geometry, held December 12-16, 2011, at the International Centre for Mathematical Meetings (CIEM), Castro Urdiales, Spain. Tropical geometry is a new and rapidly developing field of mat




Idempotent Mathematics and Mathematical Physics


Book Description

Idempotent mathematics is a rapidly developing new branch of the mathematical sciences that is closely related to mathematical physics. The existing literature on the subject is vast and includes numerous books and journal papers. A workshop was organized at the Erwin Schrodinger Institute for Mathematical Physics (Vienna) to give a snapshot of modern idempotent mathematics. This volume contains articles stemming from that event. Also included is an introductory paper by G. Litvinov and additional invited contributions. The resulting volume presents a comprehensive overview of the state of the art. It is suitable for graduate students and researchers interested in idempotent mathematics and tropical mathematics.




Tropical and Idempotent Mathematics


Book Description

This volume is a collection of papers from the International Conference on Tropical and Idempotent Mathematics, held in Moscow, Russia in August 2007. This is a relatively new branch of mathematical sciences that has been rapidly developing and gaining popularity over the last decade. Tropical mathematics can be viewed as a result of the Maslov dequantization applied to 'traditional' mathematics over fields. Importantly, applications in econophysics and statistical mechanics lead to an explanation of the nature of financial crises. Another original application provides an analysis of instabilities in electrical power networks. Idempotent analysis, tropical algebra, and tropical geometry are the building blocks of the subject. Contributions to idempotent analysis are focused on the Hamilton-Jacobi semigroup, the max-plus finite element method, and on the representations of eigenfunctions of idempotent linear operators. Tropical algebras, consisting of plurisubharmonic functions and their germs, are examined. The volume also contains important surveys and research papers on tropical linear algebra and tropical convex geometry.