Desiccant-Assisted Cooling


Book Description

The increasing concern with indoor air quality has led to air-quality standards with increased ventilation rates. Although increasing the volume flow rate of outside air is advisable from the perspective of air-quality, it is detrimental to energy consumption, since the outside air has to be brought to the comfort condition before it is insufflated to the conditioned ambient. Moreover, the humidity load carried within outside air has challenging HVAC engineers to design cooling units which are able to satisfactorily handle both sensible and latent contributions to the thermal load. This constitutes a favorable scenario for the use of solid desiccants to assist the cooling units. In fact, desiccant wheels have been increasingly applied by HVAC designers, allowing distinct processes for the air cooling and dehumidification. In fact, the ability of solid desiccants in moisture removal is effective enough to allow the use of evaporative coolers, in opposition to the traditional vapor-compression cycle, resulting in an ecologically sound system which uses only water as the refrigerant. Desiccant Assisted Cooling: Fundamentals and Applications presents different approaches to the mathematical modeling and simulation of desiccant wheels, as well as applications in thermal comfort and humidity controlled environments. Experts in the field discuss topics from enthalpy, lumped models for heat and mass transfer, and desiccant assisted radiant cooling systems, among others. Aimed at air-conditioning engineers and thermal engineering researchers, this book can also be used by graduate level students and lecturers in the field.




Design of a Solar assisted Liquid Desiccant based evaporative Cooler


Book Description

Academic Paper from the year 2017 in the subject Engineering - Power Engineering, Eastern Mediterranean University, language: English, abstract: The increase of occupant comfort demands are leading to rising requirement for air conditioning, but deteriorating global energy and environment crisis are starving for energy saving and environmental protection. The need to come up with the new energy saving as well as environmental friendly air conditioning systems has been more urgent than ever before. In hot and humid areas, the liquid desiccant air-conditioning systems based on evaporative cooling was proposed as a promising invention. This system overcomes the difficulty of evaporative cooler increased humidity with cooling, which makes it unsuitable for hot and humid climates, by dehumidifying the air first and then cooling it inside an evaporative cooler with water. The heating effect of dehumidification process is compensated by cooling water circulation. The use of dehumidifier in conjunction with an evaporative cooler increases the efficiency of the system. Some of the advantages of using this system are: it can remove the air latent load, environmental friendly, removes the pollutants from the process air and reduces the amount of the electrical energy consumed. The primary objective of this project is to design a solar based liquid desiccant evaporative system to purify and supply cool air. Liquid desiccant dehumidification has been proven to be an effective method to extract the moisture of air with relatively less energy consumption, especially compared with conventional vapor compression system. Inside the dehumidifier we used calcium chloride solution which after some period of time gets diluted with water and loses its moisture absorbing capacity and therefore, needs to be heated in the solar collector to ensure that the liquid desiccant does not lose its absorption capacity. In this project, several different aspects in solar assisted liquid desiccant based evaporative cooler have been considered. Some of these aspects include the availability of the materials, manufacturability of the product, sustainability of the product, health and safety regulations and the environmental effects of the product.




Advanced Technologies, Systems, and Applications V


Book Description

This book gathers papers that are centered on the theory and practice of a wide variety of advanced technologies. They cover the latest developments in computing, networking, information technology, robotics, complex systems, communications, energy, mechanical engineering, civil engineering, geodesy, and other subjects. These papers were selected for presentation at the 12th annual conference Days of the Bosnian-Herzegovinian American Academy of Arts and Sciences (BHAAAS), which was scheduled to be held in Mostar, Bosnia and Herzegovina in June 2020 but was postponed due to the coronavirus pandemic. However, in light of the high quality of the submissions, BHAAAS’ technical and natural sciences division decided to create this special book despite the postponement. The editors would like to extend their special thanks to all the chairs of the planned symposia for their dedicated work in the production of this book: Jasmin Kevrić, Zerina Mašetić, Dželila Mehanović (Computer Science); Anes Kazagić, Hajrudin Džafo, Izet Smajević (Mechanical Engineering); Tarik Uzunović, Asif Šabanović, Jasmin Kevrić (Mechatronics, Robotics and Embedded Systems); Mirza Šarić, Tarik Hubana, Maja Muftić Dedović (Advanced Electrical Power Systems); Mirza Pozder, Naida Ademović, Medžida Mulić (Civil Engineering and Geodesy); Adnan Mujezinović, Muris Torlak (Computer Modeling and Simulations for Engineering Applications); and Aljo Mujčić, Edin Mujčić (Information and Communication Technologies).




Advances in Solar Heating and Cooling


Book Description

Advances in Solar Heating and Cooling presents new information on the growing concerns about climate change, the security of energy supplies, and the ongoing interest in replacing fossil fuels with renewable energy sources. The amount of energy used for heating and cooling is very significant, estimated, for example, as half of final energy consumption in Europe. Solar thermal installations have the potential to meet a large proportion of the heating and cooling needs of both buildings and industry and the number of solar thermal installations is increasing rapidly. This book provides an authoritative review of the latest research in solar heating and cooling technologies and applications. Provides researchers in academia and industry with an authoritative overview of heating and cooling for buildings and industry in one convenient volume Part III, ‘Solar cooling technologies’ is contributed by authors from Shanghai Jiao Tong University, which is a world-leader in this area Covers advanced applications from zero-energy buildings, through industrial process heat to district heating and cooling




Polygeneration Systems


Book Description

The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies Offers a comprehensive list of all current numerical and experimental results of polygeneration available Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results




Energy-Efficient Systems for Agricultural Applications


Book Description

This book reports thermodynamic investigation, analyses, and options of temperature/humidity control systems and their technologies for agricultural applications including (but not limited to) fruits and vegetable storage, poultry air-conditioning, livestock thermal comfort, and wet market air-conditioning. The optimum temperature and humidity requirements for these agricultural applications are identified. Consequently, energy-efficient heat pump options are explored accordingly. The book helps to understand and to apply the thermodynamic knowledge of the energy-efficient systems for agricultural applications.




Low Energy Cooling for Sustainable Buildings


Book Description

This long-awaited reference guide provides a complete overview of low energy cooling systems for buildings, covering a wide range of existing and emerging sustainable energy technologies in one comprehensive volume. An excellent data source on cooling performance, such as building loads or solar thermal chiller efficiencies, it is essential reading for building services and renewable energy engineers and researchers covering sustainable design. The book is unique in including a large set of experimental results from years of monitoring actual building and energy plants, as well as detailed laboratory and simulation analyses. These demonstrate which systems really work in buildings, what the real costs are and how operation can be optimized – crucial information for planners, builders and architects to gain confidence in applying new technologies in the building sector. Inside you will find valuable insights into: the energy demand of residential and office buildings; facades and summer performance of buildings; passive cooling strategies; geothermal cooling; active thermal cooling technologies, including absorption cooling, desiccant cooling and new developments in low power chillers; sustainable building operation using simulation. Supporting case study material makes this a useful text for senior undergraduate students on renewable and sustainable energy courses. Practical and informative, it is the best up-to-date volume on the important and rapidly growing area of cooling.




Desiccant Heating, Ventilating, and Air-Conditioning Systems


Book Description

This book presents the necessary fundamental knowledge in the research, development, design, selection, and application of desiccant heating, ventilating, and air-conditioning systems. It covers the established installations in different climatic conditions and building types. In addition, advanced performance evaluation techniques are presented, covering thermodynamic, economic, and environmental aspects. Hence, the book is an important resource for undergraduate and graduate students, design and installation engineers, researchers and scientists, building owners and occupants, and energy and environmental policy makers.




Applications of Solar Energy


Book Description

This book focuses on solar-energy-based renewable energy systems and discusses the generation of electric power using solar photovoltaics, as well as some new techniques, such as solar towers, for both residential and commercial needs. Such systems have played an important role in the move towards low-emission and sustainable energy sources. The book covers a variety of applications, such as solar water heaters, solar air heaters, solar drying, nanoparticle-based direct absorption solar systems, solar volumetric receivers, solar-based cooling systems, solar-based food processing and cooking, efficient buildings using solar energy, and energy storage for solar thermal systems. Given its breadth of coverage, the book offers a valuable resource for researchers, students, and professionals alike.