Design and Analysis of Experiments with R


Book Description

Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data, and illustrates the interpretation of results. Drawing on his many years of working in the pharmaceutical, agricultural, industrial chemicals, and machinery industries, the author teaches students how to: Make an appropriate design choice based on the objectives of a research project Create a design and perform an experiment Interpret the results of computer data analysis The book emphasizes the connection among the experimental units, the way treatments are randomized to experimental units, and the proper error term for data analysis. R code is used to create and analyze all the example experiments. The code examples from the text are available for download on the author’s website, enabling students to duplicate all the designs and data analysis. Intended for a one-semester or two-quarter course on experimental design, this text covers classical ideas in experimental design as well as the latest research topics. It gives students practical guidance on using R to analyze experimental data.




A First Course in Design and Analysis of Experiments


Book Description

Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.




Experimental Design and Analysis


Book Description

Experimental design is one of the most fundamental topics in social science statistics. This book introduces the reader to the elements of experimental design and analysis through careful explanations of the procedures as well as through illustrations using actual examples.




Design and Analysis of Experiments with R


Book Description

Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data,




Design and Analysis of Experiments


Book Description

This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.




Business Experiments with R


Book Description

BUSINESS EXPERIMENTS with R A unique text that simplifies experimental business design and is dedicated to the R language Business Experiments with R offers a guide to, and explores the fundamentals of experimental business designs. The book fills a gap in the literature to provide a text on the topic of business statistics that addresses issues such as small samples, lack of normality, and data confounding. The author—a noted expert on the topic—puts the focus on the A/B tests (and their variants) that are widely used in industry, but not typically covered in business statistics textbooks. The text contains the tools needed to design and analyze two-treatment experiments (i.e., A/B tests) to answer business questions. The author highlights the strategic and technical issues involved in designing experiments that will truly affect organizations. The book then builds on the foundation in Part I and expands the multivariable testing. Since today’s companies are using experiments to solve a broad range of problems, Business Experiments with R is an essential resource for any business student. This important text: Presents the key ideas that business students need to know about experiments Offers a series of examples, focusing on a specific business question Helps develop the ability to frame ill-defined problems and determine what data and analysis would provide information about that problem Written for students of general business, marketing, and business analytics, Business Experiments with R is an important text that helps to answer business questions by highlighting the strategic and technical issues involved in designing experiments that will truly affect organizations.




Optimal Experimental Design with R


Book Description

Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi




Analysis of Variance in Experimental Design


Book Description

As an introductory textbook on the analysis of variance or a reference for the researcher, this text stresses applications rather than theory, but gives enough theory to enable the reader to apply the methods intelligently rather than mechanically. Comprehensive, and covering the important techniques in the field, including new methods of post hoc testing. The relationships between different research designs are emphasized, and these relationships are exploited to develop general principles which are generalized to the analyses of a large number of seemingly differentdesigns. Primarily for graduate students in any field where statistics are used.




Design of Experiments in Chemical Engineering


Book Description

While existing books related to DOE are focused either on process or mixture factors or analyze specific tools from DOE science, this text is structured both horizontally and vertically, covering the three most common objectives of any experimental research: * screening designs * mathematical modeling, and * optimization. Written in a simple and lively manner and backed by current chemical product studies from all around the world, the book elucidates basic concepts of statistical methods, experiment design and optimization techniques as applied to chemistry and chemical engineering. Throughout, the focus is on unifying the theory and methodology of optimization with well-known statistical and experimental methods. The author draws on his own experience in research and development, resulting in a work that will assist students, scientists and engineers in using the concepts covered here in seeking optimum conditions for a chemical system or process. With 441 tables, 250 diagrams, as well as 200 examples drawn from current chemical product studies, this is an invaluable and convenient source of information for all those involved in process optimization.




The Design and Analysis of Computer Experiments


Book Description

This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for and adjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers. New to this revised and expanded edition: • An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples • A new comparison of plug-in prediction methodologies for real-valued simulator output • An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions • A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization • A new chapter describing graphical and numerical sensitivity analysis tools • Substantial new material on calibration-based prediction and inference for calibration parameters • Lists of software that can be used to fit models discussed in the book to aid practitioners