Thin Plates and Shells


Book Description

Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering applications. It includes computer processes for finite difference, finite element, boundary element, and boundary collocation methods as well as other variational and numerical methods. It also contains end-of-chapter examples and problem/solution sets, a catalog of solutions for cylindrical and spherical shells, and tables of the most commonly used plates and shells.




Design of Plate and Shell Structures


Book Description

This book is written primarily for professional engineers interested in designing plate and shell structures. It covers basic aspects of theories and gives examples for the design of components due to internal and external loads as well as other loads, such as wind and dead loads. Various derivations are kept relatively simple and the resultant equations are simplified to a level where the engineer can apply them directly to design problems. More elaborate derivations and more general equations can be found in the literature for those interested in a more in-depth knowledge of the theories of plates and shells. The examples given throughout this book are intended to show the engineer the level of analysis needed to achieve a safe design based on a given required degree of accuracy. This book is also appropriate for advanced engineering courses.




Analysis of Shells and Plates


Book Description

The study ofthree-dimensional continua has been a traditional part of graduate education in solid mechanics for some time. With rational simplifications to the three-dimensional theory of elasticity, the engineering theories of medium-thin plates and of thin shells may be derived and applied to a large class of engi neering structures distinguished by a characteristically small dimension in one direction. Often, these theories are developed somewhat independently due to their distinctive geometrical and load-resistance characteristics. On the other hand, the two systems share a common basis and might be unified under the classification of Surface Structures after the German term Fliichentragwerke. This common basis is fully exploited in this book. A substantial portion of many traditional approaches to this subject has been devoted to constructing classical and approximate solutions to the governing equations of the system in order to proceed with applications. Within the context of analytical, as opposed to numerical, approaches, the limited general ity of many such solutions has been a formidable obstacle to applications involving complex geometry, material properties, and/or loading. It is now relatively routine to obtain computer-based solutions to quite complicated situations. However, the choice of the proper problem to solve through the selection of the mathematical model remains a human rather than a machine task and requires a basis in the theory of the subject.




Aging with Spinal Cord Injury


Book Description

This is the first book to integrate the theory, design, and stability analysis of plates and shells in one comprehensive volume. With authoritative accounts of diverse aspects of plates and shells, this volume facilitates the study and design of structures that incorporate both plate and shell components.




Theory and Design of Plate and Shell Structures


Book Description

The design of many structures such as pressure vessels, aircrafts, bridge decks, dome roofs, and missiles is based on the theories of plates and shells. The degree of simplification needed to adopt the theories to the design of various structures depends on the type of structure and the re quired accuracy of the results. Hence, a water storage tank can be satis factorily designed using the membrane shell theory, which disregards all bending moments, whereas the design of a missile casing requires a more precise analysis in order to minimize weight and materials. Similarly, the design of a nozzle-to-cylinder junction in a nuclear reactor may require a sophisticated finite element analysis to prevent fatigue failure while the same junction in an air accumulator in a gas station is designed by simple equations that satisfy equilibrium conditions. Accordingly, this book is written for engineers interested in the theories of plates and shells and their proper application to various structures. The examples given throughout the book subsequent to derivation of various theories are intended to show the engineer the level of analysis required to achieve a safe design with a given degree of accuracy. The book covers three general areas. These are: bending of plates; membrane and bending theories of shells; and buckling of plates and shells. Bending of plates is discussed in five chapters. Chapters 1 and 2 cover rectangular plates with various boundary and loading conditions.




Plates and Shells


Book Description

Noted for its practical, accessible approach to senior and graduate-level engineering mechanics, Plates and Shells: Theory and Analysis is a long-time bestselling text on the subjects of elasticity and stress analysis. Many new examples and applications are included to review and support key foundational concepts. Advanced methods are discussed and analyzed, accompanied by illustrations. Problems are carefully arranged from the basic to the more challenging level. Computer/numerical approaches (Finite Difference, Finite Element, MATLAB) are introduced, and MATLAB code for selected illustrative problems and a case study is included.




Theory and Design of Plate Shell Structures


Book Description

This is the first book to integrate the theory, design, and stability analysis of plates and shells in one comprehensive volume. With authoritative accounts of diverse aspects of plates and shells, this volume facilitates the study and design of structures that incorporate both plate and shell components.




Theory and Analysis of Elastic Plates and Shells, Second Edition


Book Description

This text presents a complete treatment of the theory and analysis of elastic plates. It provides detailed coverage of classic and shear deformation plate theories and their solutions by analytical as well as numerical methods for bending, buckling and natural vibrations. Analytical solutions are based on the Navier and Levy solution method, and numerical solutions are based on the Rayleigh-Ritz methods and finite element method. The author address a range of topics, including basic equations of elasticity, virtual work and energy principles, cylindrical bending of plates, rectangular plates and an introduction to the finite element method with applications to plates.




Analysis of Shells, Plates, and Beams


Book Description

This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Theory and Analysis of Elastic Plates and Shells


Book Description

Because plates and shells are common structural elements in aerospace, automotive, and civil engineering structures, engineers must understand the behavior of such structures through the study of theory and analysis. Compiling this information into a single volume, Theory and Analysis of Elastic Plates and Shells, Second Edition presents a complete