Transistor Switching and Sequential Circuits


Book Description

Transistor Switching and Sequential Circuits presents the basic ideas involved in the construction of computers, instrumentation, pulse communication systems, and automation. This book discusses the design procedure for sequential circuits. Organized into two parts encompassing eight chapters, this book begins with an overview of the ways on how to generate the types of waveforms needed in digital circuits, principally ramps, square waves, and delays. This text then considers the behavior of some simple circuits, including the inverter, the emitter follower, and the long-tailed pair. Other chapters examine the significant methods of producing non-sinusoidal waveforms, such as saw-tooth waves or square waves. This book discusses as well the procedures in organizing a circuit, which can be used in more complex applications than in the design of counters. The final chapter deals with the principle of machine multiplication. This book is a valuable resource for students engaged in the design and construction of digital or switching circuits.




Analog and Switching Circuit Design


Book Description

This introduction to basic circuit design reviews a variety of semiconductor devices, integrated structures, analog circuits and low-power switching circuits. It covers the electrical characteristics and applications of semiconductor devices, and introduces the concept of CAD design.




Principles of Transistor Circuits


Book Description

For over thirty years, Stan Amos has provided students and practitioners with a text they could rely on to keep them at the forefront of transistor circuit design. This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switch-mode power supplies.Although integrated circuits have widespread application, the role of discrete transistors is undiminished, both as important building blocks which students must understand and as practical solutions to design problems, especially where appreciable power output or high voltage is required. New circuit techniques covered for the first time in this edition include current-dumping amplifiers, bridge output stages, dielectric resonator oscillators, crowbar protection circuits, thyristor field timebases, low-noise blocks and SHF amplifiers in satellite receivers, video clamps, picture enhancement circuits, motor drive circuits in video recorders and camcorders, and UHF modulators. The plan of the book remains the same: semiconductor physics is introduced, followed by details of the design of transistors, amplifiers, receivers, oscillators and generators. Appendices provide information on transistor manufacture and parameters, and a new appendix on transistor letter symbols has been included.







Semiconductor Devices


Book Description

Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.







Analog and Switching Circuit Design


Book Description

This introduction to basic circuit design reviews a variety of semiconductor devices, integrated structures, analog circuits, and low-power switching circuits. It describes the electrical characteristics and applications of semiconductor devices, covering amplifier stages, biasing, difference stages, noise, integrated circuits, frequency-dependent circuits, discrete and field-effect devices, switching devices, semiconductor transducers, and power supplies. Analog-to-digital and digital- to-analog convertors are also considered and closing chapters introduce the concept of computer-aided design and describe how application-specific integrated circuits may be designed and produced. Questions and numerical problems are also included.