Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems


Book Description

Design and Applications of Nanostructured Polymer Blend and Nanocomposite Systems offers readers an intelligent, thorough introduction to the design and applications of this new generation of designer polymers with customized properties. The book assembles and covers, in a unified way, the state-of-the-art developments of this less explored type of material. With a focus on nanostructured polymer blends, the book discusses the science of nanostructure formation and the potential performance benefits of nanostructured polymer blends and composites for applications across many sectors: electronics, coatings, adhesives, energy (photovoltaics), aerospace, automotive, and medical devices (biocompatible polymers). The book also describes the design, morphology, and structure of nanostructured polymer composites and blends to achieve specific properties. Covers all important information for designing and selecting the right nanostructured polymer system Provides specialized knowledge on self-repairing, nanofibre and nanostructured multiphase materials, as well as evaluation and testing of nanostructured polymer systems Serves as a reference guide for development of new products in industries ranging from electronics, coatings, and energy, to transport and medical applications Describes the design, morphology, and structure of nanostructured polymer composites and blends to achieve specific properties




Nanostructured Polymer Blends


Book Description

Over 30% of commercial polymers are blends or alloys or one kind or another. Nanostructured blends offer the scientist or plastics engineer a new range of possibilities with characteristics including thermodynamic stablility; the potential to improve material transparency, creep and solvent resistance; the potential to simultaneously increase tensile strength and ductility; superior rheological properties; and relatively low cost. Nanostructured Polymer Blends opens up immense structural possibilities via chemical and mechanical modifications that generate novel properties and functions and high-performance characteristics at a low cost. The emerging applications of these new materials cover a wide range of industry sectors, encompassing the coatings and adhesives industry, electronics, energy (photovoltaics), aerospace and medical devices (where polymer blends provide innovations in biocompatible materials). This book explains the science of nanostructure formation and the nature of interphase formations, demystifies the design of nanostructured blends to achieve specific properties, and introduces the applications for this important new class of nanomaterial. All the key topics related to recent advances in blends are covered: IPNs, phase morphologies, composites and nanocomposites, nanostructure formation, the chemistry and structure of additives, etc. Introduces the science and technology of nanostructured polymer blends – and the procedures involved in melt blending and chemical blending to produce new materials with specific performance characteristics Unlocks the potential of nanostructured polymer blends for applications across sectors, including electronics, energy/photovoltaics, aerospace/automotive, and medical devices (biocompatible polymers) Explains the performance benefits in areas including rheological properties, thermodynamic stablility, material transparency, solvent resistance, etc.




Nanostructured Polymer Blends


Book Description

The design of polymer blends constitutes an interesting alternative to obtaining micro- and nanostructured surfaces. The cost is reasonable and it is free from time-consuming procedures. Blending of polymers can yield materials with unprecedented properties that cannot be provided otherwise by using a single polymer. The free surface topography of polymer blend films, often related to phase domain structure, is critical to the applications. Two main aspects need to be considered in the preparation of multistructured blends: the interfaces involved and the morphology to be obtained. The control of these two aspects depends further on materials-related parameters involving the composition of the blend, the interfacial tension or viscosity ratio, and the processing conditions related to the temperature, time, or intensity of mixing, among others. Both domain structure and topography of the blend films have garnered increasing interest over the past decade. This chapter describes the nanomicrostructures formed at the polymer surface from polymer blends. Despite the crucial role that surfaces play in the final application of the material, up to now most of the studies concerning polymer blends have been related to the control of the mechanical properties (toughness, stiffness, thermal expansion, etc.), their barrier properties, or the electrical conductivity. This chapter focuses on the analysis of the structured polymer surfaces and thin films, giving an overview of the role of these structures on the final application. The principles of phase separation and the resulting structures formed are briefly discussed, followed by a wide overview of the possibilities of producing stimuli-responsive interfaces by introducing, among other things, pH- or temperature-responsive polymers within the blend. Finally, we look at how using particular preparation conditions and/or self-assembly of block copolymers, the formation of films and surfaces with hierarchical order length-scales can be induced. We also examine the main areas in which multiscale-ordered interfaces obtained from polymer blends have been applied.




Nanostructured Polymer Blends and Composites in Textiles


Book Description

This new volume reviews recent academic and technological developments behind new engineered modified nanotextile materials. The developments in textiles using nanotechnology give ordinary materials improved properties, such as better water resistance, enhanced moisture and odor reduction, increased strength and elasticity, and resistance to bacter




Nanostructured Polymer Blends


Book Description

The exceptional properties of nanoheterogeneous materials result both from the nature of each component, the size scale, the degree of mixing between the two phases, and the surface area-to-volume ratio. Therefore, significant performances of the resulting materials can be reached by tailoring the interfaces. Due to their features, nanoheterogeneous materials have been involved in a plethora of niche markets linked, for instance, to new generations of smart textiles, photovoltaic and fuel cells, antennas and satellite communications, optoelectronics, new catalysts and coatings, smart therapeutic vectors with controlled drug delivery properties, new ultrasensitive sensors, cosmetics, smart papers, and so on. The chapter is an overview of the current state of knowledge in processing, manufacturing, characterization, and potential applications of the most common polymer nanocomposites, with a special attention to their utilizations in gas sensing.




Engineered Polymer Nanocomposites for Energy Harvesting Applications


Book Description

Engineered Polymer Nanocomposites for Energy Harvesting Applications looks at materials engineering, characterization and design aspects of mechanical energy harvesting devices for superior performance. Tapping into electrical energy from various mechanical stimuli, such as stress, elongation, tension and vibration has been getting substantial research attention, however, there are many challenges associated with the development energy harvesters with efficient conversion capabilities. This title consolidates a broad spectrum of material engineering and devices design research into one resource and will be an invaluable reference for those working in this field. Provides an interdisciplinary book focused on the engineering of high performance polymer-based nanocomposites and design strategies of high performance energy harvesting Written by leading researchers in the field of materials science, polymer science and nanotechnology from industry, academia, government and private research institutions across the globe Includes broad coverage of specific analytical techniques that will assist researchers to solve fundamental and applied problems in the development of materials for energy harvesting applications




Nanostructured Polymer Blends


Book Description

Nanostructured hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels. Research into nanostructured hydrogels for biomedical applications has seen great progress in recent years owing to their unlimited potential to advance human health. The development of nanotechnology provides opportunities to characterize, manipulate, and organize matter systematically at the nanometer scale. This is because nanostructured systems in general and nanostructured polymer hydrogels in particular have noble advantages as transporters for a wide range of drugs and tissue engineering scaffolds for biomedical (therapeutic) applications. This chapter explains the design and development of different nanostructured hydrogels and their applications in the biomedical field.




Nanostructured Polymer Blends


Book Description

Miscibility and compatibility in polymer blends is a topic of great academic and industrial importance. This is because miscibility and compatibility contribute to morphology, properties, and performance. Miscibility results in one phase; compatibility creates a disperse phase with size and stability determined by interfacial interactions. Miscible polymer properties are averaged similar to a plasticizer polymer, and compatible polymers retain properties of each component, such as toughening or reinforcement. With miscible polymer blends the continuous phase dominates properties; the disperse phase contributes via stress transfer. This chapter revisits the criteria for miscibility or compatibility in polymer blends and the contributors of compatibility compared with miscibility and incompatibility. Development of copolymers and their blending with thermosets and thermoplastics result in complex two-phase morphologies. The dynamics of phase separation observed in polymer blends leading to different morphologies and the criteria for phase separation is explained. A nanometer-dispersed phase requires strong interfacial interactions to stabilize the large interfacial area, and this is favored by rapid spinodal phase separation compared with size diminution by high shear. Nanoblends open up a new arena for polymer blends, and research shows that nanoblends have outstanding optical and mechanical properties.




Nanostructured Immiscible Polymer Blends


Book Description

Nanostructured Immiscible Polymer Blends: Migration and Interface covers a wide range of nanoparticle types, emphasizing the mechanisms and parameters involved in the migration of nanofillers inside immiscible polymer blends. This book explores the influence of nanoparticle migration on the localization, and hence, morphology development, electrical conductivity, and met-rheological properties of blended composite materials. As the influence of solid particles, ranging in size from several hundred nanometers to a few microns in immiscible polymer blends has been extensively studied for use as compatibilizers, morphology stabilizers, and reinforcement agents, this book is a timely resource. Outlines techniques used to prepare nanoparticles-modified immiscible polymer blend composites Explains the structural and morphological development, and melt-state rheological behaviors of nanoparticles-modified immiscible polymer blend composites Discusses major industrial applications




Poly(vinyl chloride)-based Blends, Interpenetrating Polymer Networks (IPNs), and Gels


Book Description

Poly(vinyl chloride)-Based Blends, IPNs, and Gels brings together the latest research on the blending of PVC, covering processing, materials, properties, and applications. This book addresses these challenges and highlights the state-of-the-art in the field, such as the development of eco-friendly micro and nanostructured functional materials based on PVC and advances in experimental and theoretical studies of PVC based-polymer blends. This is a valuable resource for researchers and advanced students in polymer science, chemistry, composite science, and materials science and engineering, as well as R&D professionals, engineers, and scientists working with advanced PVC-based materials across a range of industries. Offers methodical, in-depth coverage of PVC-based blends, IPNs and gels with each polymer type Explains advanced methods for PVC-based materials with improved properties for a range of novel applications Provides avenues for improved sustainability, discussing PVC from biomass, lifecycle, recycling, and other environmental considerations