Design And Applications Of Single-site Heterogeneous Catalysts: Contributions To Green Chemistry, Clean Technology And Sustainability


Book Description

For far too long chemists and industrialists have relied on the use of aggressive reagents such as nitric and sulphuric acids, permanganates and dichromates to prepare the massive quantities of both bulk and fine chemicals that are needed for the maintenance of civilised life — materials such as fuels, fabrics, foodstuffs, fertilisers and pharmaceuticals. Such aggressive reagents generate vast quantities of environmentally harmful and often toxic by-products, including the oxides of nitrogen, of metal oxides and carbon dioxide.Now, owing to recent advances made in the synthesis of nanoporous solids, it is feasible to design new solid catalysts that enable benign, mild oxidants to be used, frequently without utilising solvents, to manufacture the products that the chemical, pharmaceutical, agro- and bio-chemical industries require. These new solid agents are designated single-site heterogeneous catalysts (SSHCs). Their principal characteristics are that all the active sites present in the high-area solids are identical in their atomic environment and hence in their energy of interaction with reactants, just as in enzymes.Single-site heterogeneous catalysts now occupy a position of growing importance both academically and in their potential for commercial exploitation. This text, the only one devoted to such catalysts, dwells both on principles of design and on applications, such as the benign synthesis of nylon 6 and vitamin B3. It equips the reader with unifying insights required for future catalytic adventures in the quest for sustainability in the materials used by humankind.Anyone acquainted with the language of molecules, including undergraduates in the physical and biological sciences, as well as graduates in engineering and materials science, should be able to assimilate the principles and examples presented in this book. Inter alia, it describes how clean technology and ‘green’ processes may be carried out in an environmentally responsible manner.




Liquid Phase Oxidation via Heterogeneous Catalysis


Book Description

Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an international team of leading chemists representing both industry and academia. The book begins with a chapter on environmentally benign oxidants and then covers: Selective oxidations catalyzed by TS-1 and other metal-substituted zeolites Selective catalytic oxidation over ordered nanoporous metallo-aluminophosphates Selective oxidations catalyzed by mesoporous metal-silicates Liquid phase oxidation of organic compounds by supported metal-based catalysts Selective liquid phase oxidations in the presence of supported polyoxometalates Selective oxidations catalyzed by supported metal complexes Liquid phase oxidation of organic compounds by metal-organic frameworks Heterogeneous photocatalysis for selective oxidations with molecular oxygen All the chapters dedicated to specific types of catalysts follow a similar organization and structure, making it easy to compare the advantages and disadvantages of different catalysts. The final chapter examines the latest industrial applications, such as the production of catechol and hydroquinone, cyclohexanone oxime, and propylene oxide. With its unique focus on liquid phase heterogeneous oxidation catalysis, this book enables researchers in organic synthesis and oxidation catalysis to explore and develop promising new catalytic materials and synthetic routes for a broad range of industrial applications.




Principles and Practice of Heterogeneous Catalysis


Book Description

This long-awaited second edition of the successful introduction to the fundamentals of heterogeneous catalysis is now completely revised and updated. Written by internationally acclaimed experts, this textbook includes fundamentals of adsorption, characterizing catalysts and their surfaces, the significance of pore structure and surface area, solid-state and surface chemistry, poisoning, promotion, deactivation and selectivity of catalysts, as well as catalytic process engineering. A final section provides a number of examples and case histories. With its color and numerous graphics plus references to help readers to easily find further reading, this is a pivotal work for an understanding of the principles involved.




The Selected Papers of Sir John Meurig Thomas


Book Description

John Meurig Thomas is a former Director of the Royal Institution of Great Britain, a former head of the Department of Physical Chemistry and former Master of Peterhouse, University of Cambridge. A world-renowned solid-state, materials and surface chemist, he has been an educator, researcher, academic administrator, author of university texts, government advisor, industrial consultant and trustee of national museums in a career spanning over 50 years. Recipient of many international awards, including the Linus Pauling, Willard–Gibbs, Kapitza, Natta, Stokes, Davy and Faraday medals, he is also a fellow of the Royal Society (1977), of the American Philosophical Society (1993) and of ten other national academies. He is best known for his fundamental work in heterogeneous catalysis, chemical electron microscopy and in the popularisation of science, for which, in conjunction with his services to chemistry, he was knighted (1991). He is also founding editor of three scientific journals and editor or co-editor of some 30 monographs. A new mineral, meurigite, was named in his honour (1995). Most recently in 2016, Sir John was awarded the Royal Medal for Physical Sciences by the Royal Society. Drawn from over 1200 publications, this volume contains a summarised account of Sir John's work, with a selection of the new techniques pioneered and discovered by him and his colleagues. Also included are popular science articles, and various illustrations of techniques which have enhanced our knowledge of many facets of condensed matter science. Contributions from 80 peers, colleagues, former co-workers, students and friends worldwide who have interacted with or been influenced by him are a tribute to the professional and personal life of Sir John, making this book a unique reflective summary of the work of one of the greatest achievers in modern British physical science.




Ethics Of Chemistry: From Poison Gas To Climate Engineering


Book Description

'Overall, this collection of case studies provides an outstanding starting point for understanding the ethics of chemistry. It is an extremely important contribution to the study of chemical ethics … Ethics of Chemistry is a key resource for educators interested in integrating ethics instruction into their chemistry curricula … an important foundation for equipping students with the moral judgement and analytical skills necessary to contend with the ethical issues they are likely to face in their professional lives.'Nature Chemistry'… the book offers a general introduction to many relevant topics concerning the values, responsibilities, and judgements in (and of) chemistry. The volume could be helpful for university students and teachers or even general readers interested in the ethics of chemistry.' [Read Full Review]José Ramón Bertomeu-SánchezAmbixAlthough chemistry has been the target of numerous public moral debates for over a century, there is still no academic field of ethics of chemistry to develop an ethically balanced view of the discipline. And while ethics courses are increasingly demanded for science and engineering students in many countries, chemistry is still lagging behind because of a lack of appropriate teaching material. This volume fills both gaps by establishing the scope of ethics of chemistry and providing a cased-based approach to teaching, thereby also narrating a cultural history of chemistry.From poison gas in WWI to climate engineering of the future, this volume covers the most important historical cases of chemistry. It draws lesson from major disasters of the past, such as in Bhopal and Love Canal, or from thalidomide, Agent Orange, and DDT. It further introduces to ethical arguments pro and con by discussing issues about bisphenol-A, polyvinyl chloride, and rare earth elements; as well as of contested chemical projects such as human enhancement, the creation of artificial life, and patents on human DNA. Moreover, it illustrates chemical engagements in preventing hazards, from the prediction of ozone depletion, to Green Chemistry, and research in recycling, industrial substance substitution, and clean-up. Students also learn about codes of conduct and chemical regulations.An international team of experts narrate the historical cases and analyse their ethical dimensions. All cases are suitable for undergraduate teaching, either in classes of ethics, history of chemistry, or in chemistry classes proper.




Albemarle Street


Book Description

The publication presents a selection of the remarkable personalities who have worked at The Royal Institution in London. Many of them revolutionized various facets of science and technology, others were renowned for their general cultural contributions to the arts, literature, drama, anthropology, medicine, music, poetry, politics and religion.




The Periodic Table II


Book Description

As 2019 has been declared the International Year of the Periodic Table, it is appropriate that Structure and Bonding marks this anniversary with two special volumes. In 1869 Dmitri Ivanovitch Mendeleev first proposed his periodic table of the elements. He is given the major credit for proposing the conceptual framework used by chemists to systematically inter-relate the chemical properties of the elements. However, the concept of periodicity evolved in distinct stages and was the culmination of work by other chemists over several decades. For example, Newland’s Law of Octaves marked an important step in the evolution of the periodic system since it represented the first clear statement that the properties of the elements repeated after intervals of 8. Mendeleev’s predictions demonstrated in an impressive manner how the periodic table could be used to predict the occurrence and properties of new elements. Not all of his many predictions proved to be valid, but the discovery of scandium, gallium and germanium represented sufficient vindication of its utility and they cemented its enduring influence. Mendeleev’s periodic table was based on the atomic weights of the elements and it was another 50 years before Moseley established that it was the atomic number of the elements, that was the fundamental parameter and this led to the prediction of further elements. Some have suggested that the periodic table is one of the most fruitful ideas in modern science and that it is comparable to Darwin’s theory of evolution by natural selection, proposed at approximately the same time. There is no doubt that the periodic table occupies a central position in chemistry. In its modern form it is reproduced in most undergraduate inorganic textbooks and is present in almost every chemistry lecture room and classroom. This second volume provides chemists with an overview of the important role played by the Periodic Table in advancing our knowledge of solid state and bioinorganic chemistry. It also illustrates how it has been used to fine-tune the properties of compounds which have found commercial applications in catalysis, electronics, ceramics and in medicinal chemistry.




Architects of Structural Biology


Book Description

This is a history of the personalities and single-minded devotion of four Nobel laureates who played a pivotal role in the creation of a new and prevalent branch of biology. This led to major medical advances in one of the greatest centres of scientific research: the Laboratory of Molecular Biology in Cambridge, which they helped to establish.




4D Visualization of Matter


Book Description

Ever since the beginning of mankind's efforts to pursue scientific inquiry into the laws of nature, visualization of the very distant and the very small has been paramount. The examples are numerous. A century ago, the atom appeared mysterious, a “raisin or plum pie of no structure,” until it was visualized on the appropriate length and time scales. Similarly, with telescopic observations, a central dogma of the cosmos was changed and complexity yielded to simplicity of the heliocentric structure and motion in our solar system. For matter, in over a century of developments, major advances have been made to explore the inner microscopic structures and dynamics. These advances have benefited many fields of endeavor, but visualization was incomplete; it was limited either to the 3D spatial structure or to the 1D temporal evolution. However, in systems with myriads of atoms, 4D spatiotemporal visualization is essential for dissecting their complexity. The biological world is rich with examples, and many molecular diseases cannot be fully understood without such direct visualization, as, for example, in the case of Alzheimer's and Parkinson's. The same is true for phenomena in materials science, chemistry, and nanoscience. This anthology is an account of the collected works that have emerged over the past decade from Caltech. Through recent publications, the volume provides overviews of the principles, the electron-based techniques, and the applications made. Thanks to advances in imaging principles and technology, it is now possible with 4D electron microscopy to reach ten orders of magnitude improvement in time resolution while simultaneously conserving the atomic spatial resolution in visualization. This is certainly a long way from Robert Hooke's microscopy, which was recorded in his 1665 masterpiece Micrographia.




Catalysis for Sustainability


Book Description

Catalysis for Sustainability: Goals, Challenges, and Impacts explores the intersection between catalytic science and sustainable technologies as a means to addressing current economic, social, and environmental problems. These problems include harnessing alternative energy sources, pollution prevention and remediation, and the manufacturing of comm