Low-Speed Wind Tunnel Testing


Book Description

A brand-new edition of the classic guide on low-speed wind tunnel testing While great advances in theoretical and computational methods have been made in recent years, low-speed wind tunnel testing remains essential for obtaining the full range of data needed to guide detailed design decisions for many practical engineering problems. This long-awaited Third Edition of William H. Rae, Jr.'s landmark reference brings together essential information on all aspects of low-speed wind tunnel design, analysis, testing, and instrumentation in one easy-to-use resource. Written by authors who are among the most respected wind tunnel engineers in the world, this edition has been updated to address current topics and applications, and includes coverage of digital electronics, new instrumentation, video and photographic methods, pressure-sensitive paint, and liquid crystal-based measurement methods. The book is organized for quick access to topics of interest, and examines basic test techniques and objectives of modeling and testing aircraft designs in low-speed wind tunnels, as well as applications to fluid motion analysis, automobiles, marine vessels, buildings, bridges, and other structures subject to wind loading. Supplemented with real-world examples throughout, Low-Speed Wind Tunnel Testing, Third Edition is an indispensable resource for aerospace engineering students and professionals, engineers and researchers in the automotive industries, wind tunnel designers, architects, and others who need to get the most from low-speed wind tunnel technology and experiments in their work.




Wind Tunnel Testing of High-Rise Buildings


Book Description

Since the 1960s, wind tunnel testing has become a commonly used tool in the design of tall buildings. It was pioneered, in large part, during the design of the World Trade Center Towers in New York. Since those early days of wind engineering, wind tunnel testing techniques have developed in sophistication, but these techniques are not widely understood by the designers using the results. As a direct result, the CTBUH Wind Engineering Working Group was formed to develop a concise guide for the non-specialist. The primary goal of this guide is to provide an overview of the wind tunnel testing process for design professionals. This knowledge allows readers to ask the correct questions of their wind engineering consultants throughout the design process. This is not an in-depth guide to the technical intricacies of wind tunnel testing, it focusses instead on the information the design community needs, including: a unique methodology for the presentation of wind tunnel results to allow straightforward comparison of results from different wind tunnel laboratories. advice on when a tall building is likely to be sufficiently sensitive to wind effects to benefit from a wind tunnel test background for assessing whether design codes and standards are applicable details of the types of tests that are commonly conducted descriptions of the fundamentals of wind climate and the interaction of wind and tall buildings This unique book is an essential guide for all designers of tall buildings, and anyone else interested in the process of wind tunnel testing for tall buildings.




Wind Tunnels of NASA


Book Description




Wind Tunnel Testing for Buildings and Other Structures


Book Description

ASCE/SEI 49-21 provides the minimum requirements for conducting and interpreting wind tunnel tests to determine wind loads on buildings and other structures.




Wind Energy Explained


Book Description

Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)




Wind Tunnels and Experimental Fluid Dynamics Research


Book Description

The book "Wind Tunnels and Experimental Fluid Dynamics Research" is comprised of 33 chapters divided in five sections. The first 12 chapters discuss wind tunnel facilities and experiments in incompressible flow, while the next seven chapters deal with building dynamics, flow control and fluid mechanics. Third section of the book is dedicated to chapters discussing aerodynamic field measurements and real full scale analysis (chapters 20-22). Chapters in the last two sections deal with turbulent structure analysis (chapters 23-25) and wind tunnels in compressible flow (chapters 26-33). Contributions from a large number of international experts make this publication a highly valuable resource in wind tunnels and fluid dynamics field of research.




Aeroacoustic Measurements


Book Description

The book describes recent developments in aeroacoustic measurements in wind tunnels and the interpretation of the resulting data. The reader will find the latest measurement techniques described along with examples of the results.







The Chinese Greenhouse


Book Description

“A prescription for survival in this gorgeously illustrated and accessible guide to the future of farming.” —Albert Bates, author of The Biochar Solution Grow vegetables year-round in a greenhouse powered only by solar energy! Originally developed in China to feed millions, Chinese greenhouses are earth-sheltered, solar-heated, east-west oriented, intelligently glazed, and well-insulated. They have proven highly effective in growing warm-weather vegetables and fruits like green peppers and tomatoes in cold climates through fall, winter, and early spring using passive solar energy as the sole heat source. The Chinese Greenhouse is a full-color comprehensive guide to these passive solar greenhouses for self-sufficiency and growing year-round in soil or aquaponic grow beds with no additional heat. Coverage includes: How to design, build, and operate a Chinese greenhouse How to improve performance via short-term and long-term heat banking How to provide additional heat to make your greenhouse operate even more effectively How to cool the greenhouse during the summer. Become a more self-sufficient gardener, growing and harvesting a variety of fresh fruits and vegetables year-round, with your own Chinese greenhouse. “Wonderfully researched . . . brilliant.” —Jean-Martin Fortier, farmer and author of The Market Gardener, editor of Growers Magazine “Essential reading for pioneers of Chinese greenhouses.” —Pam Dawling, author of The Year-Round Hoophouse and Sustainable Market Farming “Every enthusiastic vegetable farmer dreams of this winter-growing miracle, and Dan shows how to do it.” —Shawna Coronado, author of 101 Organic Gardening Hacks




Progress in Turbulence and Wind Energy IV


Book Description

This fourth issue on "progress in turbulence" is based on the fourth ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Leading researchers from the engineering and physical sciences presented latest results in turbulence research. Basic as well as applied research is driven by the rather notorious difficult and essentially unsolved problem of turbulence. In this collection of contributions clear progress can be seen in different aspects, ranging from new quality of numerical simulations to new concepts of experimental investigations and new theoretical developments. The importance of turbulence is shown for a wide range of applications including: combustion, energy, flow control, urban flows, are few examples found in this volume. A motivation was to bring fundamentals of turbulence in connection with renewable energy. This lead us to add a special topic relevant to the impact of turbulence on the wind energy conversion. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Basic Turbulence Aspects, II Particle Laden Flows, III Modeling and Simulations, IV, Experimental Methods, V Special Flows, VI Atmospheric Boundary Layer, VII Boundary Layer, VIII Wind Energy and IX Convection. This book is dedicated to the memory of Prof. Tim Nickels. Shortly after giving an invited lecture at the 4th ITI conference, the turbulence community lost a world-class scientist, a friend and devoted family man.