Design and Development of Material-based Resolution Enhancement Techniques for Optical Lithography


Book Description

The relentless commercial drive for smaller, faster, and cheaper semi-conductor devices has pushed the existing patterning technologies to their limits. Photolithography, one of the crucial processes that determine the feature size in a microchip, is currently facing this challenge. The immaturity of next generation lithography (NGL) technology, particularly EUV, forces the semiconductor industry to explore new processing technologies that can extend the use of the existing lithographic method (i.e. ArF lithography) to enable production beyond the 32 nm node. Two new resolution enhancement techniques, double exposure lithography (DEL) and pitch division lithography (PDL), were proposed that could extend the resolution capability of the current lithography tools. This thesis describes the material and process development for these two techniques. DEL technique requires two exposure passes in a single lithographic cycle. The first exposure is performed with a mask that has a relaxed pitch, and the mask is then shifted by half pitch and re-used for the second exposure. The resolution of the resulting pattern on the wafer is doubled with respect to the features on the mask. This technique can be enabled with a type of material that functions as optical threshold layer (OTL). The key requirements for materials to be useful for OTL are a photoinduced isothermal phase transition and permeance modulation with reverse capabilities. A number of materials were designed and tested based on long alkyl side chain crystalline polymers that bear azobenzene pendant groups on the main chain. The target copolymers were synthesized and fully characterized. A proof-of-concept for the OTL design was successfully demonstrated with a series of customized analytical techniques. PDL technique doubles the line density of a grating mask with only a single exposure and is fully compatible with current lithography tools. Thus, this technique is capable of extending the resolution limit of the current ArF lithography without increasing the cost-of-ownership. Pitch division with a single exposure is accomplished by a dual-tone photoresist. This thesis presents a novel method to enable a dual-tone behavior by addition of a photobase generator (PBG) into a conventional resist formulation. The PBG was optimized to function as an exposure-dependent base quencher, which mainly neutralizes the acid generated in high dose regions but has only a minor influence in low dose regions. The resulting acid concentration profile is a parabola-like function of exposure dose, and only the medium exposure dose produces a sufficient amount of acid to switch the resist solubility. This acid response is exploited to produce pitch division patterns by creating a set of negative-tone lines in the overexposed regions in addition to the conventional positive-tone lines. A number of PBGs were synthesized and characterized, and their decomposition rate constants were studied using various techniques. Simulations were carried out to assess the feasibility of pitch division lithography. It was concluded that pitch division lithography is advantageous when the process aggressiveness factor k1 is below 0.27. Finally, lithography evaluations of these dual-tone resists demonstrated a proof-of-concept for pitch division lithography with 45 nm pitch divided line and space patterns for a k1 of 0.13.




Resolution Enhancement Techniques in Optical Lithography


Book Description

Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers




Selected Papers on Resolution Enhancement Techniques in Optical Lithography


Book Description

Optical lithography for integrated circuits is undergoing a renaissance with the adoption of Resolution Enhancement Technology (RET). Some RET concepts have become routine in manufacturing. This volume gathers together seminal RET papers.







Silicon Materials Science and Technology X


Book Description

This was the tenth symposium of the International Symposium on Silcon Material Science and Technology, going back to 1969. This issue provides a unique historical record of the program and will aid in the understanding of silicon materials over the last 35 years.




Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques


Book Description

This book provides a methodological understanding of the theoretical and technical limitations to the longevity of Moore’s law. The book presents research on factors that have significant impact on the future of Moore’s law and those factors believed to sustain the trend of the last five decades. Research findings show that boundaries of Moore’s law primarily include physical restrictions of scaling electronic components to levels beyond that of ordinary manufacturing principles and approaching the bounds of physics. The research presented in this book provides essential background and knowledge to grasp the following principles: Traditional and modern photolithography, the primary limiting factor of Moore’s law Innovations in semiconductor manufacturing that makes current generation CMOS processing possible Multi-disciplinary technologies that could drive Moore's law forward significantly Design principles for microelectronic circuits and components that take advantage of technology miniaturization The semiconductor industry economic market trends and technical driving factors The complexity and cost associated with technology scaling have compelled researchers in the disciplines of engineering and physics to optimize previous generation nodes to improve system-on-chip performance. This is especially relevant to participate in the increased attractiveness of the Internet of Things (IoT). This book additionally provides scholarly and practical examples of principles in microelectronic circuit design and layout to mitigate technology limits of previous generation nodes. Readers are encouraged to intellectually apply the knowledge derived from this book to further research and innovation in prolonging Moore’s law and associated principles.







Handbook of Nanophysics


Book Description

Many bottom-up and top-down techniques for nanomaterial and nanostructure generation have enabled the development of applications in nanoelectronics and nanophotonics. Handbook of Nanophysics: Nanoelectronics and Nanophotonics explores important recent applications of nanophysics in the areas of electronics and photonics. Each peer-reviewed c




Computational Lithography


Book Description

A Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers and practitioners in these fields.




Functional Polymers


Book Description

This new book covers the synthetic as well application aspects of functional polymers. It highlights modern trends in the field and showcases the recent characterization techniques that are being employed in the field of polymer science. The chapters are written by top-notch scientists who are internationally recognized in the field. The chapters will highlight the modern trend in the field.