DC—DC Converters for Future Renewable Energy Systems


Book Description

The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.




The proceedings of the 16th Annual Conference of China Electrotechnical Society


Book Description

This book gathers outstanding papers presented at the 16th Annual Conference of China Electrotechnical Society, organized by China Electrotechnical Society (CES), held in Beijing, China, from September 24 to 26, 2021. It covers topics such as electrical technology, power systems, electromagnetic emission technology, and electrical equipment. It introduces the innovative solutions that combine ideas from multiple disciplines. The book is very much helpful and useful for the researchers, engineers, practitioners, research students, and interested readers.




Understanding Renewable Energy Systems


Book Description

By mid-century, renewable energy must cover all of our energy supply if we are to phase out nuclear and successfully stop climate change. Now updated and expanded, the 2nd edition of this textbook covers the full range of renewable energy systems and now also includes such current trends as solar power storage, power-to-gas technologies, and the technology paths needed for a successful and complete energy transition. The topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential.Numerous examples are provided for calculations, and graphics help visualize the various technologies and mathematical methodologies. Understanding Renewable Energy Systems is an ideal companion for students of renewable energy at universities or technical colleges on courses such as renewable energy, electrical engineering, engineering technology, physics, process engineering, building engineering, environment, applied mechanics and mechanical engineering, as well as scientists and engineers in research and industry.




Power Electronics Converters and their Control for Renewable Energy Applications


Book Description

Power Electronics Converters and their Control for Renewable Energy Applications provides information that helps to solve common challenges with power electronics converters, including loss by switching, heating of power switches, management of switching time, improvement of the quality of the signals delivered by power converters, and improvement of the quality of energy produced by renewable energy sources. This book is of interest to academics, researchers, and engineers in renewable energy, power systems, electrical engineering, electronics, and mechanical engineering. - Includes important visual illustrations and imagery of concise circuit schematics and renewable energy applications - Features a templated approach for step-by-step implementation of the new MPPT algorithm based on recent and intelligent techniques - Provides methods for optimal harnessing of energy from renewable energy sources and converter topology synthesis




Advances in Smart Grid Technology


Book Description

This book comprises the select proceedings of the International Conference on Power Engineering Computing and Control (PECCON) 2019. This volume focuses on the different renewable energy sources which are integrated in a smart grid and their operation both in the grid connected mode and islanded mode. The contents highlight the role of power converters in the smart grid environment, battery management, electric vehicular technology and electric charging station as a load for the power network. This book can be useful for beginners, researchers as well as professionals interested in the area of smart grid technology.




Fundamentals of Power Electronics


Book Description

Fundamentals of Power Electronics, Second Edition, is an up-to-date and authoritative text and reference book on power electronics. This new edition retains the original objective and philosophy of focusing on the fundamental principles, models, and technical requirements needed for designing practical power electronic systems while adding a wealth of new material. Improved features of this new edition include: A new chapter on input filters, showing how to design single and multiple section filters; Major revisions of material on averaged switch modeling, low-harmonic rectifiers, and the chapter on AC modeling of the discontinuous conduction mode; New material on soft switching, active-clamp snubbers, zero-voltage transition full-bridge converter, and auxiliary resonant commutated pole. Also, new sections on design of multiple-winding magnetic and resonant inverter design; Additional appendices on Computer Simulation of Converters using averaged switch modeling, and Middlebrook's Extra Element Theorem, including four tutorial examples; and Expanded treatment of current programmed control with complete results for basic converters, and much more. This edition includes many new examples, illustrations, and exercises to guide students and professionals through the intricacies of power electronics design. Fundamentals of Power Electronics, Second Edition, is intended for use in introductory power electronics courses and related fields for both senior undergraduates and first-year graduate students interested in converter circuits and electronics, control systems, and magnetic and power systems. It will also be an invaluable reference for professionals working in power electronics, power conversion, and analogue and digital electronics.




Design and Control of Power Converters 2019


Book Description

In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc.




DC-DC Converter Topologies


Book Description

A comprehensive look at DC-DC converters and advanced power converter topologies for all skills levels As it can be rare for source voltage to meet the requirements of a Direct Current (DC) load, DC-DC converters are essential to access service. DC-DC power converters employ power semiconductor devices (like MOSFETs and IGBTs) as switches and passive elements such as capacitors, inductors, and transformers to alter the voltage provided by a DC source into the necessary DC voltage as is required by a DC load. This source can be a battery, solar panels, fuel cells, or a DC bus voltage fed by rectified AC utility voltage. As the many components of DC-DC converters can be differently arranged into circuit structures called topologies, there are as many possible circuit topologies as there are possible combinations of circuit elements. Focusing on DC-DC switch-mode power converters ranging from 50 W to 10kW, DC-DC Converter Topologies provides a survey of all converter topology types within this power range. General principles are described for each topology type using a representative converter as an example. Variations that can be found that differ from the example are then examined, with a helpful discussion of comparisons when relevant. A broad range of topics is covered within the book, from simple, low-power converters to complex, high-power converters and everywhere in between. DC-DC Converter Topologies readers will also find: A detailed discussion of four key DC-DC converter topologies Description of isolated two-switch pulse-width modulated (PWM) topologies including push-pull, half-bridge, and interleaved converters An exploration of high-gain converters such as coupled inductors, voltage multipliers, and switched capacitor converters This book provides the tools so that a non-expert will be equipped to deal with the vast array of DC-DC converters that presently exist. As such, DC-DC Converter Topologies is a useful reference for electrical engineers, professors, and graduate students studying in the field.




Wind and Solar Power Systems


Book Description

This book provides technological and socio-economic coverage of renewable energy. It discusses wind power technologies, solar photovoltaic technologies, large-scale energy storage technologies, and ancillary power systems. In this new edition, the book addresses advancements that have been made in renewable energy: grid-connected power plants, power electronics converters, and multi-phase conversion systems. The text has been revised to include up-to-date material, statistics, and current technology trends. Three new chapters have been added to cover turbine generators, AC and DC wind systems, and recent advances solar power conversion. Discusses additional renewable energy sources, such as ocean, special turbines, etc. Covers system integration for solar and wind energy Presents emerging DC wind systems Includes coverage on turbine generators Updated sections on solar power conversion It offers students, practicing engineers, and researchers a comprehensive look at wind and solar power technologies. It is designed as a reference and can serve as a textbook for senior undergraduates in a one-semester course on renewable power or energy systems.




New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters


Book Description

This book presents a series of new topologies and modulation schemes for soft-switching in isolated DC–DC converters. Providing detailed analyses and design procedures for converters used in a broad range of applications, it offers a wealth of engineering insights for researchers and students in the field of power electronics, as well as stimulating new ideas for future research.