Design and Optimization of Passive UHF RFID Systems


Book Description

Radio Frequency IDentification (RFID) stores and retrieves data using devices called RFID tags: objects attached to or incorporated into a product, animal or person which communicate with an RFID reader or interrogator. This book proposes a linear two-port model for an N-stage modified-Greinacher full wave rectifier, predicting the overall conversion efficiency at low power levels where the diodes are operating near their threshold voltage. Included is an experimental procedure to measure how impedance modulation in the tag affects the signal at the reader, and a useful tool for choosing the most appropriate impedances.




Design and Optimization of Passive UHF RFID Systems


Book Description

Radio Frequency IDentification (RFID) stores and retrieves data using devices called RFID tags: objects attached to or incorporated into a product, animal or person which communicate with an RFID reader or interrogator. This book proposes a linear two-port model for an N-stage modified-Greinacher full wave rectifier, predicting the overall conversion efficiency at low power levels where the diodes are operating near their threshold voltage. Included is an experimental procedure to measure how impedance modulation in the tag affects the signal at the reader, and a useful tool for choosing the most appropriate impedances.




The RF in RFID


Book Description

This book explains how UHF tags and readers communicate wirelessly. It gives an understanding of what limits the read range of a tag, how to increase it (and why that might result in breaking the law), and the practical things that need to be addressed when designing and implementing RFID technology. Avoiding heavy math but giving breadth of coverage with the right amount of detail, it is an ideal introduction to radio communications for engineers who need insight into how tags and readers work. New to this edition: • Examples of near-metal antenna techniques • Discussion of the wakeup challenge for battery-assisted tags, with a BAT architecture example • Latest development of protocols: EPC Gen 1.2.0 • Update 18000-6 discussion with battery-assisted tags, sensor tags, Manchester tags and wakeup provisions - Named a 2012 Notable Computer Book for Computer Systems Organization by Computing Reviews - The only book to give an understanding of radio communications, the underlying technology for radio frequency identification (RFID) - Praised for its readability and clarity, it balances breadth and depth of coverage - New edition includes latest developments in chip technology, antennas and protocols







Powering Autonomous Sensors


Book Description

Autonomous sensors transmit data and power their electronics without using cables. They can be found in e.g. wireless sensor networks (WSNs) or remote acquisition systems. Although primary batteries provide a simple design for powering autonomous sensors, they present several limitations such as limited capacity and power density, and difficulty in predicting their condition and state of charge. An alternative is to extract energy from the ambient (energy harvesting). However, the reduced dimensions of most autonomous sensors lead to a low level of available power from the energy transducer. Thus, efficient methods and circuits to manage and gather the energy are a must. An integral approach for powering autonomous sensors by considering both primary batteries and energy harvesters is presented. Two rather different forms of energy harvesting are also dealt with: optical (or solar) and radiofrequency (RF). Optical energy provides high energy density, especially outdoors, whereas RF remote powering is possibly the most feasible option for autonomous sensors embedded into the soil or within structures. Throughout different chapters, devices such as primary and secondary batteries, supercapacitors, and energy transducers are extensively reviewed. Then, circuits and methods found in the literature used to efficiently extract and gather the energy are presented. Finally, new proposals based on the authors’ own research are analyzed and tested. Every chapter is written to be rather independent, with each incorporating the relevant literature references. Powering Autonomous Sensors is intended for a wide audience working on or interested in the powering of autonomous sensors. Researchers and engineers can find a broad introduction to basic topics in this interesting and emerging area as well as further insights on the topics of solar and RF harvesting and of circuits and methods to maximize the power extracted from energy transducers.




Communication Shock


Book Description

In the spirit of Alvin Toffler’s acclaimed works peering into the future of the technological society, Communication Shock is a concise history of communication technologies and an exploration of the possible social and human impacts of nanotechnology on the ecology of human communication. As we become increasingly more networked with communication technologies, we must come to understand and confront the social impact of these changes. More importantly, we must wisely choose in embracing or rejecting these technologies and exploring how we might do both by striking an appropriate balance. Grounded in communication theory and praxis, Communication Shock brings some objectivity to the discussion of technology, maps its development, and encourages a rational conversation about its potential problems and promise. It challenges readers to reach their own conclusions – about the future, imagined and unimaginable, about the fundamental values in conflict, and how one might choose to embrace or contest them to maintain individual autonomy in the face of increasingly ubiquitous marketing and technological change. Present and emerging communications technologies hold the promise for a bold new future, but they also have their inherent risks and drawbacks. Communication shock is the human response, conscious or unconscious, wherein the individual chooses to resist the growing pervasiveness of technology in his or her life by seeking ways to reduce or redirect new technologies or to reject the addition of such technologies altogether. Here is a framework for understanding the potential of the evolving technologies, determining which are essential and which are distractions from the life that one believes to be meaningful, and making informed choices for the life one wishes to live.




Handbook of Bioelectronics


Book Description

This wide-ranging summary of bioelectronics provides the state of the art in electronics integrated and interfaced with biological systems in one single book. It is a perfect reference for those involved in developing future distributed diagnostic devices, from smart bio-phones that will monitor our health status to new electronic devices serving our bodies and embedded in our clothes or under our skin. All chapters are written by pioneers and authorities in the key branches of bioelectronics and provide examples of real-word applications and step-by-step design details. Through expert guidance, you will learn how to design complex circuits whilst cutting design time and cost and avoiding mistakes, misunderstandings, and pitfalls. An exhaustive set of recently developed devices is also covered, providing the implementation details and inspiration for innovating new solutions and devices. This all-inclusive reference is ideal for researchers in electronics, bio/nanotechnology, and applied physics, as well as circuit and system-level designers in industry.




UHF RFID Technologies for Identification and Traceability


Book Description

UHF Radio Frequency Identification (RFID) is an electronic tagging technology that allows an object, place or person to be automatically identified at a distance without a direct line-of-sight using a radio wave exchange. Applications include inventory tracking, prescription medication tracking and authentication, secure automobile keys, and access control for secure facilities. This book begins with an overview of UHF RFID challenges describing the applications, markets, trades and basic technologies. It follows this by highlighting the main features distinguishing UHF (860MHz-960MHz) and HF (125 kHz and 13.56 MHz) identifications, in terms of reading range, environmental sensitivity, throughput and safety. The architecture of the integrated circuits and the organization of the memory are then described. One chapter is devoted to the air interface protocol aspects, including coding, modulation, multi readers operation and anti-collision algorithms to manage the tag responses. Focus will be put upon the EPC Gen2 protocol adopted in the ISO 18000 Part 6. The core of the book will cover the design and manufacturing issues of RFID tags. The influence of the propagation medium (warehouse, libraries, etc.), the tag close environment (bottles, linens, containers, carton boxes,etc.) and the coupling between tags will also be carefully addressed. The final chapter is dedicated to an industrial use case in the supply chain management, either in the retail inventory or blood traceability.




Advanced RFID Systems, Security, and Applications


Book Description

As modern technologies continue to transform and impact our society, Radio Frequency Identification has emerged as one of the top areas of study to do just that. Using its wireless data capturing technique and incredible capabilities such as automatic identification, tracking, handling large amounts of data, and flexibility in operation, RFID aims to revamp the new millennium. Advanced RFID Systems, Security, and Applications features a comprehensive collection of research provided by leading experts in both academia and industries. This leading reference source provides state-of-the- art development on RFID and its contents will be of the upmost use to students and researchers at all levels as well as technologists, planners, and policy makers. RFID technology is progressing into a new phase of development.




Advanced Radio Frequency Identification Design and Applications


Book Description

Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for applications including automatic identification, asset tracking and security surveillance. This book focuses on the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol enhancements along with some novel applications of RFID.