Chiral Ligands


Book Description

Many new drugs on the market are chiral compounds, that is, they can exist in two non-superimposable mirror-image forms. Asymmetric catalysis encompasses a large variety of processes for obtaining such compounds. The performance of the catalyst in those processes largely depends on the ligand that makes up the catalyst. This book describes the most relevant ligand libraries for some key processes, including an overview of the state of art and the key mechanistic aspects that favor a high catalytic performance. Key Features: The book presents historical content from the time of discovery for each family of ligands. Provides a description of the synthetic route and the ligand library's application in various catalytic asymmetric reactions Suitable as supplementary reading for courses targeting the design, synthesis and application of chiral catalysts, asymmetric catalysis and sustainable production Edited by a distinguished scientist in the field, the book has a diverse audience including research groups in homogeneous catalysis, particularly asymmetric transformations




Metal-Catalyzed Asymmetric Hydrogenation. Evolution and Prospect


Book Description

Metal-Catalyzed Asymmetric Hydrogenation, Volume 68 in the Advances in Catalysis series, fills the gap between journal papers and textbooks across diverse areas of catalysis research. For more than 60 years, this series has recorded and presented the latest progress in the field of catalysis, giving the scientific community comprehensive and authoritative reviews. Chapters in this new release include Asymmetric hydrogenation of functionalized olefins, Asymmetric hydrogenation of unfunctionalized olefins or with poorly coordinative groups, Asymmetric hydrogenation of imines, Asymmetric hydrogenation of ketones, Asymmetric hydrogenation in industry, and Computational insights into metal-catalyzed asymmetric hydrogenation. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry, with this release focusing on solid acids, surface acidity and heterogeneous acid catalysis. Contains authoritative reviews written by experts in the field Explores topics that reflect progress in the field, such as catalyst synthesis, catalyst characterization, catalytic chemistry, reaction engineering, computational chemistry and physics Provides insightful and critical articles that are fully edited to suit various backgrounds







Phosphorus(III)Ligands in Homogeneous Catalysis


Book Description

Over the last 60 years the increasing knowledge of transition metal chemistry has resulted in an enormous advance of homogeneous catalysis as an essential tool in both academic and industrial fields. Remarkably, phosphorus(III) donor ligands have played an important role in several of the acknowledged catalytic reactions. The positive effects of phosphine ligands in transition metal homogeneous catalysis have contributed largely to the evolution of the field into an indispensable tool in organic synthesis and the industrial production of chemicals. This book aims to address the design and synthesis of a comprehensive compilation of P(III) ligands for homogeneous catalysis. It not only focuses on the well-known traditional ligands that have been explored by catalysis researchers, but also includes promising ligand types that have traditionally been ignored mainly because of their challenging synthesis. Topics covered include ligand effects in homogeneous catalysis and rational catalyst design, P-stereogenic ligands, calixarenes, supramolecular approaches, solid phase synthesis, biological approaches, and solubility and separation. Ligand families covered in this book include phosphine, diphosphine, phosphite, diphosphite, phosphoramidite, phosphonite, phosphinite, phosphole, phosphinine, phosphinidenene, phosphaalkenes, phosphaalkynes, P-chiral ligands, and cage ligands. Each ligand class is accompanied by detailed and reliable synthetic procedures. Often the rate limiting step in the application of ligands in catalysis is the synthesis of the ligands themselves, which can often be very challenging and time consuming. This book will provide helpful advice as to the accessibility of ligands as well as their synthesis, thereby allowing researchers to make a more informed choice. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis is an essential overview of this important class of catalysts for academic and industrial researchers working in catalyst development, organometallic and synthetic chemistry.




Chiral Ferrocenes in Asymmetric Catalysis


Book Description

This book meets the long-felt need for a reference on ferrocenes with the focus on catalysis. It provides a thorough overview of the synthesis and characterization of different types of chiral ferrocene ligands, their application to various catalytic asymmetric reactions, and versatile chiral materials as well as drug intermediates synthesized from them. Written by the "who's who" of ferrocene catalysis, this is a guide to the design of new ferrocene ligands and synthesis of chiral synthetic intermediates, and will thus be useful for organic, catalytic and synthetic chemists working in academia, industrial research or process development.




Chiral Phosphorous Based Ligands in Earth-Abundant Transition Metal Catalysis


Book Description

Chiral Phosphorous Based Ligands in Earth-Abundant Transition Metal Catalysis summarizes the most significant progress in the field of chiral phosphine ligand chemistry and a broad range of earth-abundant transition metal/chiral phosphine ligand-catalyzed enantioselective transformations. The book provides an authoritative and in-depth understanding of important topics about asymmetric catalysis based on earth-abundant transition metals/chiral phosphine ligands, making it ideal for organic chemistry researchers working in the field of asymmetric catalysis, synthetic methodologies and total synthesis.The development of new chiral phosphine ligands to achieve precise stereo control in many earth-abundant transition metal-catalyzed reactions is a very important field in organic synthesis, materials science and medicinal chemistry. The asymmetric synthesis promoted by transition metal/chiral phosphine ligands provides one of the most ideal ways to produce valuable optically active chemicals. Includes a discussion of state-of-the-art asymmetric organic reactions mediated by earth-abundant transition metals and chiral phosphine ligands Features the progress and the prospect of chiral phosphine ligands in asymmetric transition metal catalysis Covers the asymmetric reactivity modes of earth-abundant transition metals and phosphine ligands




Asymmetric Catalysis from a Chinese Perspective


Book Description

Qi-Lin Zhou and Jian-Hua Xie: Chiral Spiro Catalysts.- Fuk Loi Lam, Fuk Yee Kwong and Albert S. C. Chan: Chiral Phosphorus Ligands with Interesting Properties and Practical Applications.- Jiang Pan, Hui-Lei Yu, Jian-He Xu, Guo-Qiang Lin: Advances in Biocatalysis: Enzymatic Reactions and Their Applications.- Mei-Xiang Wang: Enantioselective Biotransformations of Nitriles.- Man Kin Wong, Yiu Chung Yip and Dan Yang: Asymmetric Epoxidation Catalyzed by Chiral Ketones.- W. J. Liu, N. Li and L. Z. Gong: Asymmetric Organocatalysis.- Qing-Hua Fan and Kuiling Ding: Enantioselective Catalysis with Structurally Tunable Immobilized Catalysts.- Chang-Hua Ding, Xue-Long Hou: Transition Metal-Catalyzed Asymmetric Allylation.- Jian Zhou and Yong Tang: Enantioselective Reactions with Trisoxazolines.- Xiang-Ping Hu, Duo-Sheng Wang, Chang-Bin Yu, Yong-Gui Zhou, and Zhuo Zheng: Adventure in Asymmetric Hydrogenation: Synthesis of Chiral Phosphorus Ligands and Asymmetric Hydrogenation of Heteroaromtics.




Ligand Design in Metal Chemistry


Book Description

The design of ancillary ligands used to modify the structural and reactivity properties of metal complexes has evolved into a rapidly expanding sub-discipline in inorganic and organometallic chemistry. Ancillary ligand design has figured directly in the discovery of new bonding motifs and stoichiometric reactivity, as well as in the development of new catalytic protocols that have had widespread positive impact on chemical synthesis on benchtop and industrial scales. Ligand Design in Metal Chemistry presents a collection of cutting-edge contributions from leaders in the field of ligand design, encompassing a broad spectrum of ancillary ligand classes and reactivity applications. Topics covered include: Key concepts in ligand design Redox non-innocent ligands Ligands for selective alkene metathesis Ligands in cross-coupling Ligand design in polymerization Ligand design in modern lanthanide chemistry Cooperative metal-ligand reactivity P,N Ligands for enantioselective hydrogenation Spiro-cyclic ligands in asymmetric catalysis This book will be a valuable reference for academic researchers and industry practitioners working in the field of ligand design, as well as those who work in the many areas in which the impact of ancillary ligand design has proven significant, for example synthetic organic chemistry, catalysis, medicinal chemistry, polymer science and materials chemistry.