Micromachined Ultrasound-Based Proximity Sensors


Book Description

Micromachined Ultrasound-Based Proximity Sensors presents a packaged ultrasound microsystem for object detection and distance metering based on micromachined silicon transducer elements. It describes the characterization, optimization and the long-term stability of silicon membrane resonators as well as appropriate packaging for ultrasound microsystems. Micromachined Ultrasound-Based Proximity Sensors describes a cost-effective approach to the realization of a micro electro mechanical system (MEMS). The micromachined silicon transducer elements were fabricated using industrial IC technology combined with standard silicon micromachining techniques. Additionally, this approach allows the cointegration of the driving and read-out circuitry. To ensure the industrial applicability of the fabricated transducer elements intensive long-term stability and reliability tests were performed under various environmental conditions such as high temperature and humidity. Great effort was undertaken to investigate the packaging and housing of the ultrasound system, which mainly determine the success or failure of an industrial microsystem. A low-stress mounting of the transducer element minimizes thermomechanical stress influences. The developed housing not only protects the silicon chip but also improves the acoustic performance of the transducer elements. The developed ultrasound proximity sensor system can determine object distances up to 10 cm with an accuracy of better than 0.8 mm. Micromachined Ultrasound-Based Proximity Sensors will be of interest to MEMS researchers as well as those involved in solid-state sensor development.




Biosensors


Book Description

Biosensors are analytical devices that combine a biologically sensitive element with a physical or chemical transducer to selectively and quantitatively detect the presence of specific compounds. Balancing basics, principles, and case studies, Biosensors: Microelectrochemical Devices covers the theory and applications of one class of biosensor-microelectrochemical devices. The book clearly explains microelectronic techniques used to produce these cheap, fast reacting, and disposable sensors with the aid of helpful diagrams and tables. Researchers and postgraduates active in the field of chemical sensors, analytical chemistry, or microelectronics will find this an invaluable reference.




In Situ Monitoring of Aquatic Systems


Book Description

This outstanding volume enables researchers to develop robust sensors and instruments for automatic 'on site' measurement of water quality. The need for an efficient multi-parameter monitoring system is ever-increasing, given that human activity is impacting so greatly on ecosystems and the increased need to develop our understanding of the underlying environmental processes. Edited by two renowned experts, this book evaluates developments over the last 10-20 years which will form the basis of future sophisticated in situ monitoring systems. The emphasis is on micro-analytical monitoring techniques and microtechnology. * Critically discusses the state of the art of existing techniques and devices * Overviews what can be expected in terms of performance * Outlines possible improvements in the future This book will be invaluable to both researchers interested in the development of environmental monitoring systems and laboratories in charge of water quality assessment by providing them with a critical evaluation of existing and possible future options.




EURO-DAC ...


Book Description







Paper


Book Description




The MEMS Handbook


Book Description

The revolution is well underway. Our understanding and utilization of microelectromechanical systems (MEMS) are growing at an explosive rate with a worldwide market approaching billions of dollars. In time, microdevices will fill the niches of our lives as pervasively as electronics do right now. But if these miniature devices are to fulfill their mammoth potential, today's engineers need a thorough grounding in the underlying physics, modeling techniques, fabrication methods, and materials of MEMS. The MEMS Handbook delivers all of this and more. Its team of authors-unsurpassed in their experience and standing in the scientific community- explore various aspects of MEMS: their design, fabrication, and applications as well as the physical modeling of their operations. Designed for maximum readability without compromising rigor, it provides a current and essential overview of this fledgling discipline.




Case Studies in Micromechatronics


Book Description

The book “Case Studies in Micromechatronics – From Systems to Process” offers prominent sample applications of micromechatronic systems and the enabling fabrication technologies. The chosen examples represent five main fields of application: consumer electronics (pressure sensor), mobility and navigation (acceleration sensor), handling technology and automation (micro gripper), laboratory diagnostics (point of care system), and biomedical technology (smart skin). These five sample systems are made from different materials requiring a large variety of modern fabrication methods and design rules, which are explained in detail. As a result, an inverted introduction “from prominent applications to base technologies” is provided. Examples of applications are selected to offer a broad overview of the development environment of micromechatronic systems including established as well as cutting-edge microfabrication technologies.