Electromagnetic Compatibility (EMC) Design and Test Case Analysis


Book Description

A practical introduction to techniques for the design of electronic products from the Electromagnetic compatibility (EMC) perspective Introduces techniques for the design of electronic products from the EMC aspects Covers normalized EMC requirements and design principles to assure product compatibility Describes the main topics for the control of electromagnetic interferences and recommends design improvements to meet international standards requirements (FCC, EU EMC directive, Radio acts, etc.) Well organized in a logical sequence which starts from basic knowledge and continues through the various aspects required for compliance with EMC requirements Includes practical examples and case studies to illustrate design features and troubleshooting Author is the founder of the EMC design risk evaluation approach and this book presents many years’ experience in teaching and researching the topic




Design for Electromagnetic Compatibility--In a Nutshell


Book Description

This open access book provides practicing electrical engineers and students a practical – and mathematically sound – introduction to the topic of electromagnetic compatibility (EMC). The author enables readers to understand better how to overcome commonly failed EMC tests for radiated emission, radiated immunity, and electrostatic discharge (ESD), while providing concrete EMC design guidelines. The book also presents an overview of EMC standards and regulations and how to test for a global market access.




Practical Design for Electromagnetic Compatibility


Book Description

For RFI/EMC engineers, electronic designers, project engineers and others in aerospace and other industries.




EMC and the Printed Circuit Board


Book Description

This accessible, new reference work shows how and why RF energy iscreated within a printed circuit board and the manner in whichpropagation occurs. With lucid explanations, this book enablesengineers to grasp both the fundamentals of EMC theory and signalintegrity and the mitigation process needed to prevent an EMCevent. Author Montrose also shows the relationship between time andfrequency domains to help you meet mandatory compliancerequirements placed on printed circuit boards. Using real-world examples the book features: Clear discussions, without complex mathematical analysis, offlux minimization concepts Extensive analysis of capacitor usage for variousapplications Detailed examination of components characteristics with variousgrounding methodologies, including implementation techniques An in-depth study of transmission line theory A careful look at signal integrity, crosstalk, andtermination




Electromagnetic Compatibility for Device Design and System Integration


Book Description

The Electromagnetic Compatibility has become an increasingly essential factor for placing a product on the global, world wide market. Fulfilling emission limits and immunity requirements as well as handling apparently complex cases of incompatibility demands a deeper understanding of the physical interrelations and of Maxwell's theory. Based on the authors’ experiences, the textbook provides some help in solving such interferential cases. It contains many illustrative examples and more than 80 exercises with solutions.




Foundations of Electromagnetic Compatibility


Book Description

There is currently no single book that covers the mathematics, circuits, and electromagnetics backgrounds needed for the study of electromagnetic compatibility (EMC). This book aims to redress the balance by focusing on EMC and providing the background in all three disciplines. This background is necessary for many EMC practitioners who have been out of study for some time and who are attempting to follow and confidently utilize more advanced EMC texts. The book is split into three parts: Part 1 is the refresher course in the underlying mathematics; Part 2 is the foundational chapters in electrical circuit theory; Part 3 is the heart of the book: electric and magnetic fields, waves, transmission lines and antennas. Each part of the book provides an independent area of study, yet each is the logical step to the next area, providing a comprehensive course through each topic. Practical EMC applications at the end of each chapter illustrate the applicability of the chapter topics. The Appendix reviews the fundamentals of EMC testing and measurements.




Electromagnetic Compatibility for Space Systems Design


Book Description

In the aerospace industry, avoiding operating issues, especially in regard to space missions and satellite structures, is crucial. The vast majority of these issues can be traced to disturbances in the electromagnetic fields used. Electromagnetic Compatibility for Space Systems Design is a critical scholarly resource that examines the applications of electromagnetic compatibility and electromagnetic interference in the space industry. Featuring coverage on a wide range of topics, such as magnetometers, electromagnetic environmental effects, and electromagnetic shielding, this book is geared toward managers, engineers, and researchers seeking current research on the applications of electromagnetic technologies in the aerospace field.




Handbook of Electromagnetic Compatibility


Book Description

This"know-how"book gives readers a concise understanding of the fundamentals of EMC, from basic mathematical and physical concepts through present, computer-age methods used in analysis, design, and tests. With contributions from leading experts in their fields, the text provides a comprehensive overview. Fortified with information on how to solve potential electromagnetic interference (EMI) problems that may arise in electronic design, practitioners will be betterable to grasp the latest techniques, trends, and applications of this increasingly important engineering discipline. Handbook of Electromagnetic Compatibility contains extensive treatment of EMC applications to radio and wireless communications, fiber optics communications, and plasma effects. Coverage of EMC-related issues includes lightning, electromagnetic pulse, biological effects, and electrostatic discharge. Practical examples are used to illustrate the material, and all information is presented in an accessible and organized format. The text is intended primarily for those practicing engineers who need agood foundation in EMC, but it will also interest faculty and students, since a good portion of the material covered can find use in the classroom or as a springboard for further research. - The chapters are written by experts in the field - Details the fundamental principles, then moves to more advanced topics - Covers computational electromagnetics applied to EMC problems - Presents an extensive treatment of EMC applications to: Radio and wireless communications, Fiber optic communications, Plasma effects, Wired circuits, Microchips, Includes practical examples, Fiber optic, Communications, Plasma effects, Wired circuits, Microchips, Includes practical examples




Electromagnetic Compatibility Engineering


Book Description

Praise for Noise Reduction Techniques IN electronic systems "Henry Ott has literally 'written the book' on the subject of EMC. . . . He not only knows the subject, but has the rare ability to communicate that knowledge to others." —EE Times Electromagnetic Compatibility Engineering is a completely revised, expanded, and updated version of Henry Ott's popular book Noise Reduction Techniques in Electronic Systems. It reflects the most recent developments in the field of electromagnetic compatibility (EMC) and noise reduction¿and their practical applications to the design of analog and digital circuits in computer, home entertainment, medical, telecom, industrial process control, and automotive equipment, as well as military and aerospace systems. While maintaining and updating the core information—such as cabling, grounding, filtering, shielding, digital circuit grounding and layout, and ESD—that made the previous book such a wide success, this new book includes additional coverage of: Equipment/systems grounding Switching power supplies and variable-speed motor drives Digital circuit power distribution and decoupling PCB layout and stack-up Mixed-signal PCB layout RF and transient immunity Power line disturbances Precompliance EMC measurements New appendices on dipole antennae, the theory of partial inductance, and the ten most common EMC problems The concepts presented are applicable to analog and digital circuits operating from below audio frequencies to those in the GHz range. Throughout the book, an emphasis is placed on cost-effective EMC designs, with the amount and complexity of mathematics kept to the strictest minimum. Complemented with over 250 problems with answers, Electromagnetic Compatibility Engineering equips readers with the knowledge needed to design electronic equipment that is compatible with the electromagnetic environment and compliant with national and international EMC regulations. It is an essential resource for practicing engineers who face EMC and regulatory compliance issues and an ideal textbook for EE courses at the advanced undergraduate and graduate levels.




Electromagnetic Compatibility in Medical Equipment


Book Description

Co-published with the IEEE Press, this book is a practical, hands-on guide to EMC issues for medical device designers and installers. It addresses electromagnetic interference and covers the basics of EMC design, physics, and installation, minimizing theory and concentrating upon the correct way to ground and shield. Covering EMC from the inside out, the book provides the basics of electronics, discusses and evaluates problems and common causes, and explores effective remedial techniques at three levels: circuit, box, and interconnect. It contains appendices that provide important reference material such as constants and conversion factors.