Design, Generation and Tooth Contact Analysis (TCA) of Asymmetric Face Gear Drive With Modified Geometry


Book Description

A new type of face gear drive for application in transmissions, particularly in helicopters, has been developed. The new geometty differs from the existing geometry by application of asymmetric profiles and double-crowned pinion of the face gear mesh. The paper describes the computerized design, simulation of meshing and contact, and stress analysis by finite element method. Special purpose computer codes have been developed to conduct the analysis. The analysis of this new type of face gear is illustrated with a numerical example.




Theory and Practice of Gearing and Transmissions


Book Description

This book brings together papers from all spheres of mechanical engineering related to gears and transmissions, from fundamentals to advanced applications, from academic results in numerical and experimental research, to new approaches to gear design and aspects of their optimization synthesis and to the latest developments in manufacturing. Furthermore, this volume honours the work of Faydor L. Litvin on the 100th anniversary of this birth. He is acknowledged as the founder of the modern theory of gearing. An exhaustive list of his contributions and achievements and a biography are included.




Asymmetric Gearing


Book Description

The history of gears with asymmetric teeth is not sufficiently recorded in modern gear literature, with some gear researchers concluding that asymmetric tooth gears were discovered just several decades ago. This book sheds light upon the origins and state of asymmetric gearing, referencing technical articles from the 19th, 20th, and 21st centuries. As a practicing gear engineer with over 40 years’ experience, author Alexander L. Kapelevich has successfully implemented asymmetric gears in a variety of custom gear transmissions. This book addresses all aspects of asymmetric gear development, including theoretical fundamentals; tooth geometry optimization; stress analysis and rating; design and production specifics; analytical and experimental comparison to the best symmetric gears; and application examples. Readers are encouraged to look beyond the status quo established by traditional gear design, and to apply principles of asymmetric gearing to actual gear design. Optimal solutions are presented for gear drives that will maximize technical performance and marketability. Features Presents a state-of the-art, comprehensive historical overview of asymmetric gearing Explains the Direct Gear Design® approach to asymmetric gear design Describes asymmetric tooth gear geometry optimization, areas of existence, and parameter selection limits Considers practical aspects of asymmetric gear fabrication and measurement Presents analytical and experimental comparison of asymmetric gears to advanced symmetric gears, showing the advantages of asymmetric designs Provides numerous real-world examples of asymmetric gear application




Global Design to Gain a Competitive Edge


Book Description

Recent rapid globalisation of manufacturing industries leads to a drive and thirst for rapid advancements in technological development and expertise in the fields of advanced design and manufacturing, especially at their interfaces. This development results in many economical benefits to and improvement of quality of life for many people all over the world. Technically speaking, this rapid development also create many opportunities and challenges for both industrialists and academics, as the design requirements and constraints have completely changed in this global design and manufacture environment. Consequently the way to design, manufacture and realise products have changed as well. The days of designing for a local market and using local suppliers in manufacturing have gone, if enterprises aim to maintain their competitiveness and global expansion leading to further success. In this global context and scenario, both industry and the academia have an urgent need to equip themselves with the latest knowledge, technology and methods developed for engineering design and manufacture. To address this shift in engineering design and manufacture, supported by the European Commission under the Asia Link Programme with a project title FASTAHEAD (A Framework Approach to Strengthening Asian Higher Education in Advanced Design and Manufacture), three key project partners, namely the University of Strathclyde of the United Kingdom, Northwestern Polytechncial University of China, and the Troyes University of Technology of France organised a third international conference.




Advances in Manufacturing


Book Description

This book covers a variety of topics in material, mechanical, and management engineering, especially in the area of machine design, product assembly, measurement systems, process planning and quality control. It describes cutting-edge methods and applications, together with exemplary case studies. The content is based on papers presented at the 5th International Scientific-Technical Conference (MANUFACTURING 2017) held in Poznan, Poland on 24-26 October 2017. The book brings together engineering and economic topics, is intended as an extensive, timely and practice-oriented reference guide for researchers and practitioners, and is expected to foster better communication and closer cooperation between universities and their business and industry partners.







International Gear Conference 2014: 26th-28th August 2014, Lyon


Book Description

This book presents papers from the International Gear Conference 2014, held in Lyon, 26th-28th August 2014. Mechanical transmission components such as gears, rolling element bearings, CVTs, belts and chains are present in every industrial sector and over recent years, increasing competitive pressure and environmental concerns have provided an impetus for cleaner, more efficient and quieter units. Moreover, the emergence of relatively new applications such as wind turbines, hybrid transmissions and jet engines has led to even more severe constraints. The main objective of this conference is to provide a forum for the most recent advances, addressing the challenges in modern mechanical transmissions. The conference proceedings address all aspects of gear and power transmission technology and range of applications (aerospace, automotive, wind turbine, and others) including topical issues such as power losses and efficiency, gear vibrations and noise, lubrication, contact failures, tribo-dynamics and nano transmissions. - A truly international contribution with more than 120 papers from all over the world - A judicious balance between fundamental research and industrial concerns - Participation of the most respected international experts in the field of gearing - A wide range of applications in terms of size, power, speed, and industrial sector




Gear Geometry and Applied Theory


Book Description

This revised, expanded edition covers the theory, design, geometry, and manufacture of all types of gears and gear drives. An invaluable reference for designers, theoreticians, students, and manufacturers, the second edition includes advances in gear theory, gear manufacturing, and computer simulation. Among the new topics are: new geometry for gears and pumps; new design approaches for planetary gear trains and bevel gear drives; an enhanced approach for stress analysis; new methods of grinding and gear shaving; and new theory on the simulation and its application. First Edition published by Pearson Education Hb (1994): 0-132-11095-4




Face Gear Drive with Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis


Book Description

A face gear drive with a spur involute pinion is considered. The generation of the face gear is based on application of a grinding or cutting worm whereas the conventional method of generation is based on application of an involute shaper. An analytical approach for determination of: (1) the worm thread surface, (2) avoidance of singularities of the worm thread surface, (3) dressing of the worm, and (4) determination of stresses of the face-gear drive, is proposed. A computer program for simulation of meshing and contact of the pinion and face-gear has been developed. Correction of machine-tool settings is proposed for reduction of the shift of the bearing contact caused by misalignment. An automatic development of the model of five contacting teeth has been proposed for stress analysis. Numerical examples for illustration of the developed theory are provided.