Design of a Power Amplifier and Envelope Amplifier for a Multi-band Multi-standard Envelope Tracking System


Book Description

This thesis presents the design of a Power Amplifier (PA) and envelope amplifier for an Envelope Tracking (ET) system that is aimed at meeting emerging radio standards in terms of power efficiency and linearity. The class J mode of operation, as well as the efficiency and power contours from load pull was exploited to develop an adequate procedure for the design of a broadband and high efficiency radio frequency PA. An in-depth study has also been conducted for a hybrid envelope amplifier topology in order to optimize it for power efficiency through proper setting of its switching stage supply. Two separate proof of concept prototypes of the PA and envelop amplifier were designed, fabricated and tested. The PA designed was able to achieve an average drain efficiency of 73.6%, average output power of 45.89dBm, and an average gain of 18dB between 650MHz and 1.050GHz (48% bandwidth). The envelope amplifier achieved close to 74.6% efficiency for a 5MHz bandwidth LTE signal envelope with 6.4dB peak to average power ratio.




Concurrent Multi-band Envelope Tracking Power Amplifiers for Emerging Wireless Communications


Book Description

Emerging wireless communication is shifting toward data-centric broadband services, resulting in employment of sophisticated and spectrum efficient modulation and access techniques. This yields communication signals with large peak-to-average power ratios (PAPR) and stringent linearity requirements. For example, future wireless communication standard, such as long term evolution advanced (LTE-A) require adoption of carrier aggregation techniques to improve their effective modulation bandwidth. The carrier aggregation technique for LTE-A incorporates multiple carriers over a wide frequency range to create a wider bandwidth of up to 100MHz. This will require future power amplifiers (PAs) and transmitters to efficiently amplify concurrent multi-band signals with large PAPR, while maintaining good linearity. Different back-off efficiency enhancement techniques are available, such as envelope tracking (ET) and Doherty. ET has gained a lot of attention recently as it can be applied to both base station and mobile transmitters. Unfortunately, few publications have investigated concurrent multi-band amplification using ET PAs, mainly due to the limited bandwidth of the envelope amplifier. In this thesis, a novel approach to enable concurrent amplification of multi-band signals using a single ET PA will be presented. This thesis begins by studying the sources of nonlinearities in single-band and dual-band PAs. Based on the analysis, a design methodology is proposed to reduce the sources of memory effects in single-band and dual-band PAs from the circuit design stage and improve their linearizability. Using the proposed design methodology, a 45W GaN PA was designed. The PA was linearized using easy to implement, memoryless digital pre-distortion (DPD) with 8 and 28 coefficients when driven with single-band and dual-band signals, respectively. This analysis and design methodology will enable the design of PAs with reduced memory effects, which can be linearized using simple, power efficient linearization techniques, such as lookup table or memoryless polynomial DPD. Note that the power dissipation of the linearization engine becomes crucial as we move toward smaller base station cells, such as femto- and pico-cells, where complicated DPD models cannot be implemented due to their significant power overhead. This analysis is also very important when implementing a multi-band ET PA system, where the sources of memory effects in the PA itself are minimized through the proposed design methodology. Next, the principle of concurrent dual-band ET operation using the low frequency component (LFC) of the envelope of the dual-band signal is presented. The proposed dual-band ET PA modulates the drain voltage of the PA using the LFC of the envelope of the dual-band signal. This will enable concurrent dual-band operation of the ET PA without posing extra bandwidth requirements on the envelope amplifier. A detailed efficiency and linearity analysis of the dual-band ET PA is also presented. Furthermore, a new dual-band DPD model with supply dependency is proposed in this thesis, capable of capturing and compensating for the sources of distortion in the dual-band ET PA. To the best of our knowledge, concurrent dual-band operation of ET PAs using the LFC of the envelope of the dual-band signal is presented for the first time in the literature. The proposed dual-band ET operation is validated using the measurement results of two GaN ET PA prototypes. Lastly, the principle of concurrent dual-band ET operation is extended to multi-band signals using the LFC of the envelope of the multi-band signal. The proposed multi-band ET operation is validated using the measurement results of a tri-band ET PA. To the best of our knowledge, this is the first reported tri-band ET PA in literature. The tri-band ET PA is linearized using a new tri-band DPD model with supply dependency.




Envelope Tracking Power Amplifiers for Wireless Communications


Book Description

Envelope tracking technology is seen as the most promising efficiency enhancement technology for RF power amplifiers for 4G and beyond wireless communications. More and more organizations are investing and researching on this topic with huge potential in academic and commercial areas. This is the first book on the market to offer complete introduction, theory, and design considerations on envelope tracking for wireless communications. This resource presents you with a full introduction to the subject and covers underlying theory and practical design considerations.




High Efficiency Broadband Envelope-Tracking Power Amplifiers


Book Description

In order to meet the increasing demand for higher data rates while maximizing spectral efficiency, modern wireless communication systems transmit complex non-constant envelope modulation signals with high peak-to-average ratio (PAPR). As a result, conventional power amplifiers must be operated in back-off, leading to a significant efficiency reduction. Various power amplifier architectures (i.e. Doherty, outphasing, and envelope tracking) have been demonstrated to achieve high efficiency for these high PAPR signals. Unlike the other architectures, the envelope tracking power amplifier (ETPA) makes an excellent candidate for multi-band multi-frequency use, while maintaining high efficiency for high PAPR and under average power back-off, as it is fundamentally immune to changes in the frequency of the carrier; it depends only on the envelope of the RF signal. This dissertation focuses on the design of envelope tracking power amplifiers for enabling broadband wireless communication systems. First, a test-bench for evaluating broadband ETPAs is described. A calibration routine, acting as a pre-equalizer, is used to achieve a flat linear response over the entire instantaneous bandwidth of the system, resulting in less than 1% EVM for a 40 MHz LTE signal. Performances of envelope tracking power amplifiers on this test-bench at various frequencies from UHF to millimeter-wave are evaluated, and record efficiencies are demonstrated. Next, this dissertation describes how in under practical usage, the power transmitted fluctuates as a function of the load demands over time. The long-term efficiency of the ETPA is evaluated using Monte-Carlo simulations based on a projected time-varying power profile. Compared to a Doherty PA with the same peak efficiency, the ETPA can provide more than 1.4x reduction in overall energy consumed. The ETPA thus provides significant opportunities for system energy savings under realistic operation. Thirdly, to accommodate the wide range of carrier frequencies required for numerous emerging wireless systems, a multi-octave RFPA based on a compact GaN stacked IC with RC feedback is designed, fabricated, and evaluated. Multi-octave ET operation was demonstrated from 500 to 1750 MHz with >25% efficiency. Compared to its constant drain voltage counterpart, >2x improvement in RFPA efficiency is observed in ET. Lastly, while the ETPA provides advantages such as broad carrier bandwidths and high efficiency under back-off operation, one of the main challenges in ETPA design lies in accommodating wide modulation bandwidths. Adaptive de-troughing, a digital signal processing approach for extending the modulation bandwidth capability of an existing dynamic power supply, is described and evaluated. Measurements demonstrated the ability to extend ET operation to 20 MHz LTE signals. In addition, ~5-6% modulator efficiency enhancement was measured when comparing "standard" to "adaptive" de-troughing supply waveforms.




The Design of Concurrent Dual Band Envelope Tracking Power Amplifier for Basestations


Book Description

The linearity and efficiency of a transmitting system is largely determined by its last stage component: the Power Amplifier (PA). In the past century, engineers and scientists have pioneered various architectures to optimize the PA performance - most notably the linearity and efficiency, as these quantities directly correspond to signal integrity and cost, respectively. In this dissertation, the design, implementation, and measurement results of a concurrent dual-band envelope tracking (ET) PA system is detailed. The dual-band PA system incorporates a new envelope tracking (ET) methodology which relaxes the large bandwidth requirement typically placed on supply modulators for dual-band applications, resulting in significant efficiency improvement. Afterwards, the PA linearity optimized through the use of a new, highly stable, and scalable digital predistortion (DPD) scheme, viable for both constant supply as well as modulated supply (ET) dual-band PAs. The developed ET and multi-dimentional DPD system methodologies are then verified using a 10W peak gallium-nitride (GaN) ET PA operating with a dual-band input based on LTE and WCDMA signals, with center frequencies spaced by 310 MHz. The testbed is based on a Altera FPGA Stratix IV and two Analog Device mixed signal DPD boards. The proposed method provides a performance improvement as high as 17 dB in terms of normalized mean square error (NMSE) and 4.6 dB in terms of adjacent channel power ratio (ACPR) in comparison to the conventional dual-band memory polynomial method including ET.




Multiband RF Circuits and Techniques for Wireless Transmitters


Book Description

This book introduces systematic design methods for passive and active RF circuits and techniques, including state-of-the-art digital enhancement techniques. As the very first book dedicated to multiband RF circuits and techniques, this work provides an overview of the evolution of transmitter architecture and discusses current digital predistortion techniques. Readers will find a collection of novel research ideas and new architectures in concurrent multiband power dividers, power amplifiers and related digital enhancement techniques. This book will be of great interest to academic researchers, R&D engineers, wireless transmitter and protocol designers, as well as graduate students who wish to learn the core architectures, principles and methods of multiband RF circuits and techniques.




RF Power Amplifiers


Book Description

This second edition of the highly acclaimed RF Power Amplifiers has been thoroughly revised and expanded to reflect the latest challenges associated with power transmitters used in communications systems. With more rigorous treatment of many concepts, the new edition includes a unique combination of class-tested analysis and industry-proven design techniques. Radio frequency (RF) power amplifiers are the fundamental building blocks used in a vast variety of wireless communication circuits, radio and TV broadcasting transmitters, radars, wireless energy transfer, and industrial processes. Through a combination of theory and practice, RF Power Amplifiers, Second Edition provides a solid understanding of the key concepts, the principle of operation, synthesis, analysis, and design of RF power amplifiers. This extensive update boasts: up to date end of chapter summaries; review questions and problems; an expansion on key concepts; new examples related to real-world applications illustrating key concepts and brand new chapters covering ‘hot topics’ such as RF LC oscillators and dynamic power supplies. Carefully edited for superior readability, this work remains an essential reference for research & development staff and design engineers. Senior level undergraduate and graduate electrical engineering students will also find it an invaluable resource with its practical examples & summaries, review questions and end of chapter problems. Key features: • A fully revised solutions manual is now hosted on a companion website alongside new simulations. • Extended treatment of a broad range of topologies of RF power amplifiers. • In-depth treatment of state-of-the art of modern transmitters and a new chapter on oscillators. • Includes problem-solving methodology, step-by-step derivations and closed-form design equations with illustrations.




Envelope Amplifier Design for Wireless Base-station Power Amplifiers


Book Description

In order to deliver high data rates, modern wireless communication systems transmit complex modulated signals with high peak-to-average ratio, which demands wide bandwidth and stringent linearity performance for power amplifiers. To satisfy spectral mask regulations and achieve adequate error vector magnitude, power amplifiers typically operate at 6 to 10 dB back-off from the maximum output power, leading to low efficiency. To overcome the low efficiency problem, the envelope tracking power amplifier architecture has been proposed for this type of application due to its feature of high efficiency over a wide power range. The overall efficiency of an envelope tracking system relies not only on performance of the RF power amplifier but also on that of an envelope amplifier that provides a dynamically varying power supply voltage. This dissertation focuses on envelope amplifier design for efficiency enhancement of envelope tracking power amplifiers. First, the envelope tracking power amplifier architecture is analyzed, and the efficiency of a RF transistor in the envelope tracking technique is described. Then envelope amplifier behavior is investigated and a general purpose simulator is developed for analyzing and designing an envelope amplifier. Power loss and efficiency of the envelope amplifier is analyzed and compared with experimental results. The design of envelope amplifiers for high voltage (> 30 V) envelope tracking applications is described. A high voltage envelope amplifier is designed, implemented and verified. The overall envelope tracking system employing a GaN-HEMT RF transistor is demonstrated. Finally, a new architecture is developed for the efficiency enhancement of envelope amplifiers, using a digitally assisted controller design. Digital control is utilized to mitigate delay in the control loop inside the envelope amplifier, leading to lower overall power dissipation. A novel envelope amplifier architecture with dual-switcher stages based on the digitally-assisted control strategy is proposed, designed and implemented. The strategy is demonstrated to improve the efficiency of envelope amplifier as well as the system overall efficiency. The resulting performance of envelope tracking system employing a GaAs high voltage HBT with a single carrier W-CDMA input demonstrated state-of-the-art efficiency with good linearity performance.







Load-Pull Techniques with Applications to Power Amplifier Design


Book Description

This first book on load-pull systems is intended for readers with a broad knowledge of high frequency transistor device characterization, nonlinear and linear microwave measurements, RF power amplifiers and transmitters. Load-Pull Techniques with Applications to Power Amplifier Design fulfills the demands of users, designers, and researchers both from industry and academia who have felt the need of a book on this topic. It presents a comprehensive reference spanning different load-pull measurement systems, waveform measurement and engineering systems, and associated calibration procedures for accurate large signal characterization. Besides, this book also provides in-depth practical considerations required in the realization and usage of load-pull and waveform engineering systems. In addition, it also provides procedure to design application specific load-pull setup and includes several case studies where the user can customize architecture of load-pull setups to meet any specific measurement requirements. Furthermore, the materials covered in this book can be part of a full semester graduate course on microwave device characterization and power amplifier design.