Design of Aerostatic Bearings


Book Description




Air Bearings


Book Description

Comprehensive treatise on gas bearing theory, design and application This book treats the fundamental aspects of gas bearings of different configurations (thrust, radial, circular, conical) and operating principles (externally pressurized, self-acting, hybrid, squeeze), guiding the reader throughout the design process from theoretical modelling, design parameters, numerical formulation, through experimental characterisation and practical design and fabrication. The book devotes a substantial part to the dynamic stability issues (pneumatic hammering, sub-synchronous whirling, active dynamic compensation and control), treating them comprehensively from theoretical and experimental points of view. Key features: Systematic and thorough treatment of the topic. Summarizes relevant previous knowledge with extensive references. Includes numerical modelling and solutions useful for practical application. Thorough treatment of the gas-film dynamics problem including active control. Discusses high-speed bearings and applications. Air Bearings: Theory, Design and Applications is a useful reference for academics, researchers, instructors, and design engineers. The contents will help readers to formulate a gas-bearing problem correctly, set up the basic equations, solve them establishing the static and dynamic characteristics, utilise these to examine the scope of the design space of a given problem, and evaluate practical issues, be they in design, construction or testing.




Hydrostatic, Aerostatic and Hybrid Bearing Design


Book Description

Solve your bearing design problems with step-by-step procedures and hard-won performance data from a leading expert and consultant Compiled for ease of use in practical design scenarios, Hydrostatic, Aerostatic and Hybrid Bearing Design provides the basic principles, design procedures and data you need to create the right bearing solution for your requirements. In this valuable reference and design companion, author and expert W. Brian Rowe shares the hard-won lessons and figures from a lifetime's research and consultancy experience. Coverage includes: - Clear explanation of background theory such as factors governing pressure, flow and forces, followed by worked examples that allow you to check your knowledge and understanding - Easy-to-follow design procedures that provide step-by-step blueprints for solving your own design problems - Information on a wide selection of bearing shapes, offering a range and depth of bearing coverage not found elsewhere - Critical data on optimum performance from load and film stiffness data to pressure ratio considerations - Operating safeguards you need to keep in mind to prevent hot-spots and cavitation effects, helping your bearing design to withstand the demands of its intended application Aimed at both experienced designers and those new to bearing design, Hydrostatic, Aerostatic and Hybrid Bearing Design provides engineers, tribologists and students with a one-stop source of inspiration, information and critical considerations for bearing design success. - Structured, easy to follow design procedures put theory into practice and provide step-by-step blueprints for solving your own design problems. - Covers a wide selection of bearing shapes, offering a range and depth of information on hydrostatic, hybrid and aerostatic bearings not found elsewhere. - Includes critical data on optimum performance, with design specifics from load and film stiffness data to pressure ratio considerations that are essential to make your design a success.




The Design of Various Types of Air Bearing for Stimulating Frictionless Environments


Book Description

Several types of air bearings are discussed and analyzed which can effectively simulate a frictionless environment for testing space vehicle instruments and control systems. A spherical dual-flow bearing, designed for a load of 15 pounds and employing an input pressure of about 4.5 psi, has been operated with an effective coefficient of friction of only 0.00000406. However, unless all externally applied torques as well as the center of gravity of the test fixture are exactly are the bearing's center of gravity of the test fixture are exactly at the bearing's center of rotation, it will precess. This is overcome in a cylindrical dual-flow bearing designed on the same principal. A spherical mono-flow bearing, which will bear loads of 700 and 400 pounds respectively with low input pressures, are also discussed. Plots of theoretical and actual performance are given, and fabrication techniques are described.




Hydrostatic, Aerostatic, and Hybrid Bearing Design


Book Description

"Compiled for ease of use in practical design scenarios, Hydrostatic, Aerostatic and Hybrid Bearing Design provides the basic principles, design procedures and data you need to create the right bearing solution for your requirements. In this valuable reference and design companion, author and expert W. Brian Rowe shares the hard-won lessons and figures from a lifetime's research and consultancy experience."--Page 4 of cover.







Hydrostatic and Hybrid Bearing Design


Book Description

Hydrostatic and Hybrid Bearing Design is a 15-chapter book that focuses on the bearing design and testing. This book first describes the application of hydrostatic bearings, as well as the device pressure, flow, force, power, and temperature. Subsequent chapters discuss the load and flow rate of thrust pads; circuit design, flow control, load, and stiffness; and the basis of the design procedures and selection of tolerances. The specific types of bearings, their design, dynamics, and experimental methods and testing are also shown. This book will be very valuable to students of engineering design and lubrication.




Precision Machine Design


Book Description

This book is a comprehensive engineering exploration of all the aspects of precision machine design—both component and system design considerations for precision machines. It addresses both theoretical analysis and practical implementation providing many real-world design case studies as well as numerous examples of existing components and their characteristics. Fast becoming a classic, this book includes examples of analysis techniques, along with the philosophy of the solution method. It explores the physics of errors in machines and how such knowledge can be used to build an error budget for a machine, how error budgets can be used to design more accurate machines.




Machines, Mechanism and Robotics


Book Description

This volume includes select papers presented during the 4th International and 19th National Conference on Machines and Mechanism (iNaCoMM 2019), held in Indian Institute of Technology, Mandi. It presents research on various aspects of design and analysis of machines and mechanisms by academic and industry researchers.




Hydrostatic Lubrication


Book Description

Hydrostatic lubrication is characterized by the complete separation of the conjugated surfaces of a kinematic pair, by means of a film of fluid, which is pressurized by an external piece of equipment. Its distinguishing features are lack of wear, low friction, high load capacity, a high degree of stiffness and the ability to damp vibrations.This book reviews the study of externally pressurized lubrication, both from the theoretical and the technical point of view, thereby serving the needs of both researchers as well as students and technical designers. In this connection, design suggestions for the most common types of hydrostatic bearings have been included, as well as a number of examples. A comprehensive bibliography is included with each chapter providing up to date references for more in depth coverage.