Design of Agent-based Models


Book Description

Although there are plenty of publications dealing with the theory of multi-agent systems and agent-based simulations, information about the practical development of such systems is scarce. The aim of this book is to fill this empty space and to provide knowledge about design and development of agent-based simulations in an easy and comprehensible way. The book begins with the fundamentals of multi-agent systems, agent principles and their interaction, and goes on to discuss the philosophy of agent-based programming. Agent-based models - like any other scientific method - have drawbacks and limitations, which are presented in the book as well. The main portion of the text is then devoted to a description of methodology and best practices for the design and development of agent-based simulation software. The methodology (called Agentology) guides the reader through the entire development process, from the formal definition of the problem, through conceptual modeling and the selection of the particular development platform, to the programming and debugging of the code itself and the final assessment of the model. The visual language as the means of representation of the conceptual model is included. The reader is also presented with a comparison of present multi-agent development environments and tools, which could be helpful for the selection of appropriate development instruments. Given that the theoretical foundation is presented in an accessible way and supported by many practical examples, figures, schemes and source codes, this publication is especially suitable as a textbook for introductory graduate-level courses on multi-agent systems and agent-based modeling. Besides appealing to students and the scientific community, the monograph can aid software architects and developers who are not familiar with agent principles, conveying valuable insights into this distinct computer paradigm.




Agent-Based Models


Book Description

Aimed at readers with minimal experience in computer programming, this brief book provides a theoretical and methodological rationale for using ABM in the social sciences. It goes on to describe some carefully chosen examples from different disciplines, illustrating different approaches to ABM. It concludes with practical advice about how to design and create ABM, a discussion of validation procedures, and some guidelines about publishing articles based on ABM.




Agent-Based and Individual-Based Modeling


Book Description

Agent-based modeling is a new technique for understanding how the dynamics of biological, social, and other complex systems arise from the characteristics and behaviors of the agents making up these systems. This innovative textbook gives students and scientists the skills to design, implement, and analyze agent-based models. It starts with the fundamentals of modeling and provides an introduction to NetLogo, an easy-to-use, free, and powerful software platform. Nine chapters then each introduce an important modeling concept and show how to implement it using NetLogo. The book goes on to present strategies for finding the right level of model complexity and developing theory for agent behavior, and for analyzing and learning from models. Agent-Based and Individual-Based Modeling features concise and accessible text, numerous examples, and exercises using small but scientific models. The emphasis throughout is on analysis--such as software testing, theory development, robustness analysis, and understanding full models--and on design issues like optimizing model structure and finding good parameter values. The first hands-on introduction to agent-based modeling, from conceptual design to computer implementation to parameterization and analysis Provides an introduction to NetLogo with nine chapters introducing an important modeling concept and showing how to implement it using NetLogo Filled with examples and exercises, with updates and supplementary materials at http://www.railsback-grimm-abm-book.com/ Designed for students and researchers across the biological and social sciences Written by leading practitioners Leading universities that have adopted this book include: Amherst College Brigham Young University Carnegie Mellon University Cornell University Miami University Northwestern University Old Dominion University Portland State University Rhodes College Susquehanna University University College, Dublin University of Arizona University of British Columbia University of Michigan University of South Florida University of Texas at Austin University of Virginia




Empirical Agent-Based Modelling - Challenges and Solutions


Book Description

This instructional book showcases techniques to parameterise human agents in empirical agent-based models (ABM). In doing so, it provides a timely overview of key ABM methodologies and the most innovative approaches through a variety of empirical applications. It features cutting-edge research from leading academics and practitioners, and will provide a guide for characterising and parameterising human agents in empirical ABM. In order to facilitate learning, this text shares the valuable experiences of other modellers in particular modelling situations. Very little has been published in the area of empirical ABM, and this contributed volume will appeal to graduate-level students and researchers studying simulation modeling in economics, sociology, ecology, and trans-disciplinary studies, such as topics related to sustainability. In a similar vein to the instruction found in a cookbook, this text provides the empirical modeller with a set of 'recipes' ready to be implemented. Agent-based modeling (ABM) is a powerful, simulation-modeling technique that has seen a dramatic increase in real-world applications in recent years. In ABM, a system is modeled as a collection of autonomous decision-making entities called “agents.” Each agent individually assesses its situation and makes decisions on the basis of a set of rules. Agents may execute various behaviors appropriate for the system they represent—for example, producing, consuming, or selling. ABM is increasingly used for simulating real-world systems, such as natural resource use, transportation, public health, and conflict. Decision makers increasingly demand support that covers a multitude of indicators that can be effectively addressed using ABM. This is especially the case in situations where human behavior is identified as a critical element. As a result, ABM will only continue its rapid growth. This is the first volume in a series of books that aims to contribute to a cultural change in the community of empirical agent-based modelling. This series will bring together representational experiences and solutions in empirical agent-based modelling. Creating a platform to exchange such experiences allows comparison of solutions and facilitates learning in the empirical agent-based modelling community. Ultimately, the community requires such exchange and learning to test approaches and, thereby, to develop a robust set of techniques within the domain of empirical agent-based modelling. Based on robust and defendable methods, agent-based modelling will become a critical tool for research agencies, decision making and decision supporting agencies, and funding agencies. This series will contribute to more robust and defendable empirical agent-based modelling.




Agent-based Models


Book Description

Agent-based simulation has become increasingly popular as a modeling approach in the social sciences because it enables researchers to build models where individual entities and their interactions are directly represented. The Second Edition of Nigel Gilbert's Agent-Based Models introduces this technique; considers a range of methodological and theoretical issues; shows how to design an agent-based model, with a simple example; offers some practical advice about developing, verifying and validating agent-based models; and finally discusses how to plan an agent-based modelling project, publish the results and apply agent-based modeling to formulate and evaluate social and economic policies. An accompanying simulation using NetLogo and commentary on the program can be downloaded on the book's website: https://study.sagepub.com/researchmethods/qass/gilbert-agent-based-models-2e.




Agent-Based Computational Modelling


Book Description

The present book describes the methodology to set up agent-based models and to study emerging patterns in complex adaptive systems resulting from multi-agent interaction. It offers the application of agent-based models in demography, social and economic sciences and environmental sciences. Examples include population dynamics, evolution of social norms, communication structures, patterns in eco-systems and socio-biology, natural resource management, spread of diseases and development processes. It presents and combines different approaches how to implement agent-based computational models and tools in an integrative manner that can be extended to other cases.




Spatial Agent-Based Simulation Modeling in Public Health


Book Description

Presents an overview of the complex biological systems used within a global public health setting and features a focus on malaria analysis Bridging the gap between agent-based modeling and simulation (ABMS) and geographic information systems (GIS), Spatial Agent-Based Simulation Modeling in Public Health: Design, Implementation, and Applications for Malaria Epidemiology provides a useful introduction to the development of agent-based models (ABMs) by following a conceptual and biological core model of Anopheles gambiae for malaria epidemiology. Using spatial ABMs, the book includes mosquito (vector) control interventions and GIS as two example applications of ABMs, as well as a brief description of epidemiology modeling. In addition, the authors discuss how to most effectively integrate spatial ABMs with a GIS. The book concludes with a combination of knowledge from entomological, epidemiological, simulation-based, and geo-spatial domains in order to identify and analyze relationships between various transmission variables of the disease. Spatial Agent-Based Simulation Modeling in Public Health: Design, Implementation, and Applications for Malaria Epidemiology also features: Location-specific mosquito abundance maps that play an important role in malaria control activities by guiding future resource allocation for malaria control and identifying hotspots for further investigation Discussions on the best modeling practices in an effort to achieve improved efficacy, cost-effectiveness, ecological soundness, and sustainability of vector control for malaria An overview of the various ABMs, GIS, and spatial statistical methods used in entomological and epidemiological studies, as well as the model malaria study A companion website with computer source code and flowcharts of the spatial ABM and a landscape generator tool that can simulate landscapes with varying spatial heterogeneity of different types of resources including aquatic habitats and houses Spatial Agent-Based Simulation Modeling in Public Health: Design, Implementation, and Applications for Malaria Epidemiology is an excellent reference for professionals such as modeling and simulation experts, GIS experts, spatial analysts, mathematicians, statisticians, epidemiologists, health policy makers, as well as researchers and scientists who use, manage, or analyze infectious disease data and/or infectious disease-related projects. The book is also ideal for graduate-level courses in modeling and simulation, bioinformatics, biostatistics, public health and policy, and epidemiology.




Assessing the Use of Agent-Based Models for Tobacco Regulation


Book Description

Tobacco consumption continues to be the leading cause of preventable disease and death in the United States. The Food and Drug Administration (FDA) regulates the manufacture, distribution, and marketing of tobacco products - specifically cigarettes, cigarette tobacco, roll-your-own tobacco, and smokeless tobacco - to protect public health and reduce tobacco use in the United States. Given the strong social component inherent to tobacco use onset, cessation, and relapse, and given the heterogeneity of those social interactions, agent-based models have the potential to be an essential tool in assessing the effects of policies to control tobacco. Assessing the Use of Agent-Based Models for Tobacco Regulation describes the complex tobacco environment; discusses the usefulness of agent-based models to inform tobacco policy and regulation; presents an evaluation framework for policy-relevant agent-based models; examines the role and type of data needed to develop agent-based models for tobacco regulation; provides an assessment of the agent-based model developed for FDA; and offers strategies for using agent-based models to inform decision making in the future.




X-Machines for Agent-Based Modeling


Book Description

From the Foreword: "This book exemplifies one of the most successful approaches to modeling and simulating [the] new generation of complex systems. FLAME was designed to make the building of large scale complex systems models straightforward and the simulation code that it generates is highly efficient and can be run on any modern technology. FLAME was the first such platform that ran efficiently on high performance parallel computers and a version for GPU technology is also available. At its heart, and the reason why it is so efficient and robust, is the use of a powerful computational model ‘Communicating X-machines’ which is general enough to cope with most types of modelling problems. As well as being increasingly important in academic research, FLAME is now being applied in industry in many different application areas. This book describes the basics of FLAME and is illustrated with numerous examples." —Professor Mike Holcombe, University of Sheffield, UK Agent-based models have shown applications in various fields such as biology, economics, and social science. Over the years, multiple agent-based modeling frameworks have been produced, allowing experts with non-computing background to easily write and simulate their models. However, most of these models are limited by the capability of the framework, the time it takes for a simulation to finish, or how to handle the massive amounts of data produced. FLAME (Flexible Large-scale Agent-based Modeling Environment) was produced and developed through the years to address these issues. This book contains a comprehensive summary of the field, covers the basics of FLAME, and shows how concepts of X-machines, can be stretched across multiple fields to produce agent models. It has been written with several audiences in mind. First, it is organized as a collection of models, with detailed descriptions of how models can be designed, especially for beginners. A number of theoretical aspects of software engineering and how they relate to agent-based models are discussed for students interested in software engineering and parallel computing. Finally, it is intended as a guide to developers from biology, economics, and social science, who want to explore how to write agent-based models for their research area. By working through the model examples provided, anyone should be able to design and build agent-based models and deploy them. With FLAME, they can easily increase the agent number and run models on parallel computers, in order to save on simulation complexity and waiting time for results. Because the field is so large and active, the book does not aim to cover all aspects of agent-based modeling and its research challenges. The models are presented to show researchers how they can build complex agent functions for their models. The book demonstrates the advantage of using agent-based models in simulation experiments, providing a case to move away from differential equations and build more reliable, close to real, models. The Open Access version of this book, available at https://doi.org/10.1201/9781315370729, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.




An Introduction to Agent-Based Modeling


Book Description

A comprehensive and hands-on introduction to the core concepts, methods, and applications of agent-based modeling, including detailed NetLogo examples. The advent of widespread fast computing has enabled us to work on more complex problems and to build and analyze more complex models. This book provides an introduction to one of the primary methodologies for research in this new field of knowledge. Agent-based modeling (ABM) offers a new way of doing science: by conducting computer-based experiments. ABM is applicable to complex systems embedded in natural, social, and engineered contexts, across domains that range from engineering to ecology. An Introduction to Agent-Based Modeling offers a comprehensive description of the core concepts, methods, and applications of ABM. Its hands-on approach—with hundreds of examples and exercises using NetLogo—enables readers to begin constructing models immediately, regardless of experience or discipline. The book first describes the nature and rationale of agent-based modeling, then presents the methodology for designing and building ABMs, and finally discusses how to utilize ABMs to answer complex questions. Features in each chapter include step-by-step guides to developing models in the main text; text boxes with additional information and concepts; end-of-chapter explorations; and references and lists of relevant reading. There is also an accompanying website with all the models and code.