Design of Cost-Efficient Interconnect Processing Units


Book Description

Streamlined Design Solutions Specifically for NoC To solve critical network-on-chip (NoC) architecture and design problems related to structure, performance and modularity, engineers generally rely on guidance from the abundance of literature about better-understood system-level interconnection networks. However, on-chip networks present several distinct challenges that require novel and specialized solutions not found in the tried-and-true system-level techniques. A Balanced Analysis of NoC Architecture As the first detailed description of the commercial Spidergon STNoC architecture, Design of Cost-Efficient Interconnect Processing Units: Spidergon STNoC examines the highly regarded, cost-cutting technology that is set to replace well-known shared bus architectures, such as STBus, for demanding multiprocessor system-on-chip (SoC) applications. Employing a balanced, well-organized structure, simple teaching methods, numerous illustrations, and easy-to-understand examples, the authors explain: how the SoC and NoC technology works why developers designed it the way they did the system-level design methodology and tools used to configure the Spidergon STNoC architecture differences in cost structure between NoCs and system-level networks From professionals in computer sciences, electrical engineering, and other related fields, to semiconductor vendors and investors – all readers will appreciate the encyclopedic treatment of background NoC information ranging from CMPs to the basics of interconnection networks. The text introduces innovative system-level design methodology and tools for efficient design space exploration and topology selection. It also provides a wealth of key theoretical and practical MPSoC and NoC topics, such as technological deep sub-micron effects, homogeneous and heterogeneous processor architectures, multicore SoC, interconnect processing units, generic NoC components, and embeddings of common communication patterns.




On-Chip Interconnect with aelite


Book Description

The book provides a comprehensive description and implementation methodology for the Philips/NXP Aethereal/aelite Network-on-Chip (NoC). The presentation offers a systems perspective, starting from the system requirements and deriving and describing the resulting hardware architectures, embedded software, and accompanying design flow. Readers get an in depth view of the interconnect requirements, not centered only on performance and scalability, but also the multi-faceted, application-driven requirements, in particular composability and predictability. The book shows how these qualitative requirements are implemented in a state-of-the-art on-chip interconnect, and presents the realistic, quantitative costs.




Designing 2D and 3D Network-on-Chip Architectures


Book Description

This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect. It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools. Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliability. Case studies are used to illuminate new design methodologies.




Routing Algorithms in Networks-on-Chip


Book Description

This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation. Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.




On-Chip Networks


Book Description

With the ability to integrate a large number of cores on a single chip, research into on-chip networks to facilitate communication becomes increasingly important. On-chip networks seek to provide a scalable and high-bandwidth communication substrate for multi-core and many-core architectures. High bandwidth and low latency within the on-chip network must be achieved while fitting within tight area and power budgets. In this lecture, we examine various fundamental aspects of on-chip network design and provide the reader with an overview of the current state-of-the-art research in this field. Table of Contents: Introduction / Interface with System Architecture / Topology / Routing / Flow Control / Router Microarchitecture / Conclusions




Solutions on Embedded Systems


Book Description

Embedded systems have an increasing importance in our everyday lives. The growing complexity of embedded systems and the emerging trend to interconnections between them lead to new challenges. Intelligent solutions are necessary to overcome these challenges and to provide reliable and secure systems to the customer under a strict time and financial budget. Solutions on Embedded Systems documents results of several innovative approaches that provide intelligent solutions in embedded systems. The objective is to present mature approaches, to provide detailed information on the implementation and to discuss the results obtained.




Multi-Core Embedded Systems


Book Description

Details a real-world product that applies a cutting-edge multi-core architecture Increasingly demanding modern applications—such as those used in telecommunications networking and real-time processing of audio, video, and multimedia streams—require multiple processors to achieve computational performance at the rate of a few giga-operations per second. This necessity for speed and manageable power consumption makes it likely that the next generation of embedded processing systems will include hundreds of cores, while being increasingly programmable, blending processors and configurable hardware in a power-efficient manner. Multi-Core Embedded Systems presents a variety of perspectives that elucidate the technical challenges associated with such increased integration of homogeneous (processors) and heterogeneous multiple cores. It offers an analysis that industry engineers and professionals will need to understand the physical details of both software and hardware in embedded architectures, as well as their limitations and potential for future growth. Discusses the available programming models spread across different abstraction levels The book begins with an overview of the evolution of multiprocessor architectures for embedded applications and discusses techniques for autonomous power management of system-level parameters. It addresses the use of existing open-source (and free) tools originating from several application domains—such as traffic modeling, graph theory, parallel computing and network simulation. In addition, the authors cover other important topics associated with multi-core embedded systems, such as: Architectures and interconnects Embedded design methodologies Mapping of applications




VLSI 2010 Annual Symposium


Book Description

VLSI 2010 Annual Symposium will present extended versions of the best papers presented in ISVLSI 2010 conference. The areas covered by the papers will include among others: Emerging Trends in VLSI, Nanoelectronics, Molecular, Biological and Quantum Computing. MEMS, VLSI Circuits and Systems, Field-programmable and Reconfigurable Systems, System Level Design, System-on-a-Chip Design, Application-Specific Low Power, VLSI System Design, System Issues in Complexity, Low Power, Heat Dissipation, Power Awareness in VLSI Design, Test and Verification, Mixed-Signal Design and Analysis, Electrical/Packaging Co-Design, Physical Design, Intellectual property creating and sharing.




Multiprocessor System-on-Chip


Book Description

The purpose of this book is to evaluate strategies for future system design in multiprocessor system-on-chip (MPSoC) architectures. Both hardware design and integration of new development tools will be discussed. Novel trends in MPSoC design, combined with reconfigurable architectures are a main topic of concern. The main emphasis is on architectures, design-flow, tool-development, applications and system design.




Embedded Artificial Intelligence


Book Description

Recent technological developments in sensors, edge computing, connectivity, and artificial intelligence (AI) technologies have accelerated the integration of data analysis based on embedded AI capabilities into resource-constrained, energy-efficient hardware devices for processing information at the network edge. Embedded AI combines embedded machine learning (ML) and deep learning (DL) based on neural networks (NN) architectures such as convolutional NN (CNN), or spiking neural network (SNN) and algorithms on edge devices and implements edge computing capabilities that enable data processing and analysis without optimised connectivity and integration, allowing users to access data from various sources. Embedded AI efficiently implements edge computing and AI processes on resource-constrained devices to mitigate downtime and service latency, and it successfully merges AI processes as a pivotal component in edge computing and embedded system devices. Embedded AI also enables users to reduce costs, communication, and processing time by assembling data and by supporting user requirements without the need for continuous interaction with physical locations. This book provides an overview of the latest research results and activities in industrial embedded AI technologies and applications, based on close cooperation between three large-scale ECSEL JU projects, AI4DI, ANDANTE, and TEMPO. The book’s content targets researchers, designers, developers, academics, post-graduate students and practitioners seeking recent research on embedded AI. It combines the latest developments in embedded AI, addressing methodologies, tools, and techniques to offer insight into technological trends and their use across different industries.