Introduction to Thermo-Fluids Systems Design


Book Description

A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone items during the design process, and that they all must come together to produce a successful design. Because the complete design or modification of modern equipment and systems requires knowledge of current industry practices, the authors highlight the use of manufacturer’s catalogs to select equipment, and practical examples are included throughout to give readers an exhaustive illustration of the fundamental aspects of the design process. Key Features: Demonstrates how industrial equipment and systems are designed, covering the underlying theory and practical application of thermo-fluid system design Practical rules-of-thumb are included in the text as ‘Practical Notes’ to underline their importance in current practice and provide additional information Includes an instructor’s manual hosted on the book’s companion website




Design of Fluid Thermal Systems


Book Description

This book is designed to serve senior-level engineering students taking a capstone design course in fluid and thermal systems design. It is built from the ground up with the needs and interests of practicing engineers in mind; the emphasis is on practical applications. The book begins with a discussion of design methodology, including the process of bidding to obtain a project, and project management techniques. The text continues with an introductory overview of fluid thermal systems (a pump and pumping system, a household air conditioner, a baseboard heater, a water slide, and a vacuum cleaner are among the examples given), and a review of the properties of fluids and the equations of fluid mechanics. The text then offers an in-depth discussion of piping systems, including the economics of pipe size selection. Janna examines pumps (including net positive suction head considerations) and piping systems. He provides the reader with the ability to design an entire system for moving fluids that is efficient and cost-effective. Next, the book provides a review of basic heat transfer principles, and the analysis of heat exchangers, including double pipe, shell and tube, plate and frame cross flow heat exchangers. Design considerations for these exchangers are also discussed. The text concludes with a chapter of term projects that may be undertaken by teams of students.




Elements of Thermal-fluid System Design


Book Description

Numerous design-oriented end-of-chapter problems also provide realistic settings for application of the material discussed.




Thermal System Design and Simulation


Book Description

Thermal System Design and Simulation covers the fundamental analyses of thermal energy systems that enable users to effectively formulate their own simulation and optimal design procedures. This reference provides thorough guidance on how to formulate optimal design constraints and develop strategies to solve them with minimal computational effort. The book uniquely illustrates the methodology of combining information flow diagrams to simplify system simulation procedures needed in optimal design. It also includes a comprehensive presentation on dynamics of thermal systems and the control systems needed to ensure safe operation at varying loads. Designed to give readers the skills to develop their own customized software for simulating and designing thermal systems, this book is relevant for anyone interested in obtaining an advanced knowledge of thermal system analysis and design. - Contains detailed models of simulation for equipment in the most commonly used thermal engineering systems - Features illustrations for the methodology of using information flow diagrams to simplify system simulation procedures - Includes comprehensive global case studies of simulation and optimization of thermal systems




Introduction to Thermal Systems Engineering


Book Description

This survey of thermal systems engineering combines coverage of thermodynamics, fluid flow, and heat transfer in one volume. Developed by leading educators in the field, this book sets the standard for those interested in the thermal-fluids market. Drawing on the best of what works from market leading texts in thermodynamics (Moran), fluids (Munson) and heat transfer (Incropera), this book introduces thermal engineering using a systems focus, introduces structured problem-solving techniques, and provides applications of interest to all engineers.




Design of Thermal Energy Systems


Book Description

Design of Thermal Energy Systems Pradip Majumdar, Northern Illinois University, USA A comprehensive introduction to the design and analysis of thermal energy systems Design of Thermal Energy Systems covers the fundamentals and applications in thermal energy systems and components, including conventional power generation and cooling systems, renewable energy systems, heat recovery systems, heat sinks and thermal management. Practical examples are used throughout and are drawn from solar energy systems, fuel cell and battery thermal management, electrical and electronics cooling, engine exhaust heat and emissions, and manufacturing processes. Recent research topics such as steady and unsteady state simulation and optimization methods are also included. Key features: Provides a comprehensive introduction to the design and analysis of thermal energy systems, covering fundamentals and applications. Includes a wide range of industrial application problems and worked out example problems. Applies thermal analysis techniques to generate design specification and ratings. Demonstrates how to design thermal systems and components to meet engineering specifications. Considers alternative options and allows for the estimation of cost and feasibility of thermal systems. Accompanied by a website including software for design and analysis, a solutions manual, and presentation files with PowerPoint slides. The book is essential reading for: practicing engineers in energy and power industries; consulting engineers in mechanical, electrical and chemical engineering; and senior undergraduate and graduate engineering students.




Design of Thermal Systems


Book Description




Thermal Design and Optimization


Book Description

A comprehensive and rigorous introduction to thermal system designfrom a contemporary perspective Thermal Design and Optimization offers readers a lucid introductionto the latest methodologies for the design of thermal systems andemphasizes engineering economics, system simulation, andoptimization methods. The methods of exergy analysis, entropygeneration minimization, and thermoeconomics are incorporated in anevolutionary manner. This book is one of the few sources available that addresses therecommendations of the Accreditation Board for Engineering andTechnology for new courses in design engineering. Intended forclassroom use as well as self-study, the text provides a review offundamental concepts, extensive reference lists, end-of-chapterproblem sets, helpful appendices, and a comprehensive case studythat is followed throughout the text. Contents include: * Introduction to Thermal System Design * Thermodynamics, Modeling, and Design Analysis * Exergy Analysis * Heat Transfer, Modeling, and Design Analysis * Applications with Heat and Fluid Flow * Applications with Thermodynamics and Heat and Fluid Flow * Economic Analysis * Thermoeconomic Analysis and Evaluation * Thermoeconomic Optimization Thermal Design and Optimization offers engineering students,practicing engineers, and technical managers a comprehensive andrigorous introduction to thermal system design and optimizationfrom a distinctly contemporary perspective. Unlike traditionalbooks that are largely oriented toward design analysis andcomponents, this forward-thinking book aligns itself with anincreasing number of active designers who believe that moreeffective, system-oriented design methods are needed. Thermal Design and Optimization offers a lucid presentation ofthermodynamics, heat transfer, and fluid mechanics as they areapplied to the design of thermal systems. This book broadens thescope of engineering design by placing a strong emphasis onengineering economics, system simulation, and optimizationtechniques. Opening with a concise review of fundamentals, itdevelops design methods within a framework of industrialapplications that gradually increase in complexity. Theseapplications include, among others, power generation by large andsmall systems, and cryogenic systems for the manufacturing,chemical, and food processing industries. This unique book draws on the best contemporary thinking aboutdesign and design methodology, including discussions of concurrentdesign and quality function deployment. Recent developments basedon the second law of thermodynamics are also included, especiallythe use of exergy analysis, entropy generation minimization, andthermoeconomics. To demonstrate the application of important designprinciples introduced, a single case study involving the design ofa cogeneration system is followed throughout the book. In addition, Thermal Design and Optimization is one of the best newsources available for meeting the recommendations of theAccreditation Board for Engineering and Technology for more designemphasis in engineering curricula. Supported by extensive reference lists, end-of-chapter problemsets, and helpful appendices, this is a superb text for both theclassroom and self-study, and for use in industrial design,development, and research. A detailed solutions manual is availablefrom the publisher.




Design Analysis of Thermal Systems


Book Description

Here is the first book to introduce, at the senior-undergraduate and graduate levels, key aspects of the analysis of thermal systems appropriate for computer-aided design. Extensive examples and problems emphasize modelling and computer applications while synthesizing material on thermodynamics, heat transfer, and fluid mechanics. Features thorough coverage of second law analytical techniques, extensive material on numerical simulation and optimization, and an excellent description of cost analysis for thermal system design. Topics covered include the curvefitting of physical data, applications of the second law of thermodynamics, the concept and process of steady-state flowsheeting, the solving of n algebraic equations in n unknowns in both linear and nonlinear systems, the art of preliminary cost estimation, and techniques of optimization. Appendixes give dozens of project ideas and cover most of the introductory ideas found in an engineering economics text.