Charge Pump Circuit Design


Book Description

Charge pumps are finding increased attention and diversified usage in the new era of nanometer-generation chips used in different systems. This book explains the different architectures and requirements for an efficient charge pump design and explains each step in detail. It's filled with extra hands-on design information, potential pitfalls to avoid, and practical ideas harnessed from the authors' extensive experience designing charge pumps.




High-Performance Integrated Charge Pumps


Book Description

This book enables readers to gain a deep understanding of the challenges related to the design of a charge pump (CP). Analysis, modeling, design strategies and topologies are treated in detail. Novel and high-performance CP topologies and related design are organized in a coherent manner, with particular care devoted to ultra-low power and energy harvesting applications. The authors provide basic theoretical foundations as needed, in order to set the stage for readers’ comprehension of analyses and results. Exhaustive methodologies are presented and analytical derivations are included, enabling readers to gain insight on the main dependencies among the relevant circuit parameters. Although the material is presented in a formal and theoretical manner, emphasis is on the design perspective, using many practical examples and measured results.




Design of High-Performance CMOS Voltage-Controlled Oscillators


Book Description

Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.




Charge Pump IC Design


Book Description

Design state-of-the-art charge pumps Charge Pump IC Design delivers an advanced systematic approach to charge pump circuit design—from building blocks to final pump. The book describes how to achieve high power efficiency and low supply noise. Negative feedback control, compensation, and stability are discussed and real-world design examples with schematics are included. The proven techniques presented in this practical, cutting-edge guide will help you to provide the efficient power conversion needed for today’s portable electronic devices. Comprehensive coverage includes: Regulators and power converters Charge pump design specifications and design metrics Single stage charge pump Multi-stage charge pump Charge pump clock driver Charge pump stability analysis Charge pump design, regulation, and control by examples Charge pump applications




Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits


Book Description

This book is based on the 18 tutorials presented during the 28th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including next-generation analog-to-digital converters , high-performance power management systems and technology considerations for advanced IC design. For anyone involved in analog circuit research and development, this book will be a valuable summary of the state-of-the-art in these areas. Provides a summary of the state-of-the-art in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Includes coverage of next-generation analog-to-digital converters, high-performance power management systems, and technology considerations for advanced IC design.




Charge Pump Circuit Design


Book Description

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Charge pumps are finding increased attention and diversified usage in the new era of nanometer-generation chips used in different systems. This book explains the different architectures and requirements for an efficient charge pump design and explains each step in detail. It's filled with extra hands-on design information, potential pitfalls to avoid, and practical ideas harnessed from the authors' extensive experience designing charge pumps.







Pll Performance, Simulation and Design


Book Description

This book is intended for the reader who wishes to gain a solid understanding of Phase Locked Loop architectures and their applications. It provides a unique balance between both theoretical perspectives and practical design trade-offs. Engineers faced with real world design problems will find this book to be a valuable reference providing example implementations, the underlying equations that describe synthesizer behavior, and measured results that will improve confidence that the equations are a reliable predictor of system behavior. New material in the Fourth Edition includes partially integrated loop filter implementations, voltage controlled oscillators, and modulation using the PLL.




High-Performance Digital VLSI Circuit Design


Book Description

High-Performance Digital VLSI Circuit Design is the first book devoted entirely to the design of digital high-performance VLSI circuits. CMOS, BiCMOS and bipolar ciruits are covered in depth, including state-of-the-art circuit structures. Recent advances in both the computer and telecommunications industries demand high-performance VLSI digital circuits. Digital processing of signals demands high-speed circuit techniques for the GHz range. The design of such circuits represents a great challenge; one that is amplified when the power supply is scaled down to 3.3 V. Moreover, the requirements of low-power/high-performance circuits adds an extra dimension to the design of such circuits. High-Performance Digital VLSI Circuit Design is a self-contained text, introducing the subject of high-performance VLSI circuit design and explaining the speed/power tradeoffs. The first few chapters of the book discuss the necessary background material in the area of device design and device modeling, respectively. High-performance CMOS circuits are then covered, especially the new all-N-logic dynamic circuits. Propagation delay times of high-speed bipolar CML and ECL are developed analytically to give a thorough understanding of various interacting process, device and circuit parameters. High-current phenomena of bipolar devices are also addressed as these devices typically operate at maximum currents for limited device area. Different, new, high-performance BiCMOS circuits are presented and compared to their conventional counterparts. These new circuits find direct applications in the areas of high-speed adders, frequency dividers, sense amplifiers, level-shifters, input/output clock buffers and PLLs. The book concludes with a few system application examples of digital high-performance VLSI circuits. Audience: A vital reference for practicing IC designers. Can be used as a text for graduate and senior undergraduate students in the area.




Power Management Integrated Circuits


Book Description

This book intends to be a comprehensive text on the topic of integrated circuits for power management, putting together both theoretical foundations and practical details, leading to successful design practices in research and industry. It covers all the three main categories of power management circuits, viz., linear regulators, inductor-based switchers and switched-capacitor circuits, and presents detailed discussion of their common topologies, operation and modeling. Features Includes underlying theory and design/implementation practical ingredients for power management integrated circuits (PMICs). Provides in-depth analysis of topologies and circuits related to linear regulators, switched-capacitor converters and inductor-based converters. Covers all the relevant topics at the intersection between power electronics and integrated circuit design areas. Provides guidelines for design of circuits and solutions for all the pertinent topologies. Indicates all important issues and the related trade-offs in the design of PMICs. The book will be a valuable resource for senior- and graduate-level students as well as industry professionals who have done university-level courses on analog circuit design, control systems and power electronics.