Design Of Magnetic Components For Switched Mode Power Converters


Book Description

Presents A Systematic Approach To The Design Of Transformers Used In Switched Mode Power Converters (Smpcs). Various Design Aspects And Many Practical Examples Are Covered In The Book. The Design Techniques Illustrated In The Book Have Been Tested At Cedt Over The Past Several Years.The Book Contains A Mathematical Analysis Of The Various Transformer Topologies Encountered In Switched Mode Power Converters. Design Of Inductors And Current Transformers Are Also Treated In Detail.Included Also Are The Various Core Materials And Types That Are Commonly Used In Smpcs. This Book Also Introduces The Reader To Computer Aided Design Of Transformers.The Book Would Be Of Immense Use To Design Engineers In The Electronic/Electrical Industry, Senior Undergraduate And Graduate Students And Faculty Of Electronic And Electrical Engineering.




Computer-Aided Analysis and Design of Switch-Mode Power Supplies


Book Description

This comprehensive reference/text explains the development and principles of operation, modelling, and analysis of switch-mode power supplies (SMPS)-highlighting conversion efficiency, size, and steady state/transient regulation characteristics.;Covering the practical design techniques of SMPS,this book - reveals how to develop specific models of circuits and components for simulation and design purposes; explains both the computer simulation of the switching behaviours of dc-to-dc converters and the modelling of linear and nonlinear circuit components; deals with the modelling and simulation of the low-frequency behaviours of converters (including current-controlled converters and converters with multiple outputs) and regulators; describes computer-aided design (CAD) techniques as applied to converters and regulators; introduces the principles and design of quasi-resonant and resonant converters; provides details on SPICE, a circuit simulator package used to calculate electrical circuit behaviour.;Containing over 1000 helpful drawings, equations, and tables, this is a valuable reference for circuit design, electrical, and electronics engineers, and serves as an excellent text for upper-level undergraduate and graduate students in these disciplines.




Magnetic Components for Power Electronics


Book Description

Magnetic Components for Power Electronics concerns the important considerations necessary in the choice of the optimum magnetic component for power electronic applications. These include the topology of the converter circuit, the core material, shape, size and others such as cost and potential component suppliers. These are all important for the design engineer due to the emergence of new materials, changes in supplier management and the examples of several component choices. Suppliers using this volume will also understand the needs of designers. Highlights include: Emphasis on recently introduced new ferrite materials, such as those operating at megahertz frequencies and under higher DC drive conditions; Discussion of amorphous and nanocrystalline metal materials; New technologies such as resonance converters, power factors correction (PFC) and soft switching; Catalog information from over 40 magnetic component suppliers; Examples of methods of component choice for ferrites, amorphous nanocrystalline materials; Information on suppliers management changes such as those occurring at Siemens, Philips, Thomson and Allied-Signal; Attention to the increasingly important concerns about EMI. This book should be especially helpful for power electronic circuit designers, technical executives, and material science engineers involved with power electronic components.




High-Frequency Magnetic Components


Book Description

If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.




Switched-Mode Power Supply Simulation with SPICE


Book Description

In a reprint of Steve Sandler's classic technical book, PWM models and power supply simulation solutions are described in depth--with special attention paid to practical magnetic components. All common topologies are discussed, including linear, buck and flyback converters. Practical guidance is given for EMI/RFI filtering and magnetics design and analysis. Most of the book's code (available to book purchasers) will run, unaltered, on all of popular SPICE versions, including PSPSICE, LTSpice and Tina. Sometimes maligned, SPICE can provide very accurate results that correlate with real circuit operation if accurate models are used. As an internationally recognized power supply expert and zealot for improved power integrity, Steve Sandler's classic Switched-Mode Power Supply Simulation is a valuable resource for any Engineer's bookshelf.




Practical Switching Power Supply Design


Book Description

Why use switching power supplies? -- How a switching power supply works -- A walk through a representative switching power supply -- Switching power supply topologies -- Semiconductors used in a switching power supply -- The magnetic components within a switching power supply -- Cross-regulation of the outputs -- Protection -- Miscellaneous topics -- Closing the loop-feedback and stability -- Resonant converters -- an introduction -- Switching power supply design examples.







Switch Mode Power Conversion


Book Description

First Published in 2017. Although the concept of switch mode power conversion is not new, the technology to utilize it has only recently become available. This outstanding monograph provides a complete overview of this subject, enabling engineers to design and implement systems to meet specific requirements. Using the simplest possible language for easy understanding, Switch Mode Power Conversion offers such helpful features as a complete listing of calculator programs, over 200 references, and numerous graphical design aids ... presents examples of basic converter de­ signs ... provides guidelines for avoiding input filter interaction with converter input impedance ... allows designers to check their work with performance evaluation methods... simplifies the explanation of magnetic components basics ... and much more! With this timely volume-the first, single-source reference in this field-electrical and electronic engineers; designers and manufacturers of electronic equipment; and aerospace, computer, control and communication engineers will gain a full appreciation of Switch Mode Power Conversion




Switching Power Supplies A - Z


Book Description

Switching Power Supplies A - Z is the most comprehensive study available of the theoretical and practical aspects of controlling and measuring Electromagnetic Interference in switching power supplies, including input filter instability considerations. The new edition is thoroughly revised with six completely new chapters, while the existing EMI chapters are expanded to include many more step-by-step numerical examples and key derivations and EMI mitigation techniques. New topics cover the length and breadth of modern switching power conversion techniques, lucidly explained in simple but thorough terms, now with uniquely detailed "wall-reference charts" providing easy access to even complex topics. Step-by-step and iterative approach for calculating high-frequency losses in forward converter transformers, including Proximity losses based on Dowell's equations Thorough, yet uniquely simple design flow-chart for building DC-DC converters and their magnetic components under typical wide-input supply conditions Step-by-step, solved examples for stabilizing control loops of all three major topologies, using either transconductance or conventional operational amplifiers, and either current-mode or voltage-mode control




Design and Synthesis of Soft Magnetic Materials for High Frequency Power Applications


Book Description

There is an increasing demand for miniaturizing magnetic components such as inductors and transformers in power converters. This demand is driven by the decreasing size of electronic products and by the potential savings which might be achieved by integrating such components on integrated circuits. Magnetic components are typically the largest components by size and dissipate the most energy. Increasing the frequency at which converters operate can decrease the size of these components and increase their power handling capacity per unit area. However conventional soft magnetic materials are not optimized for operation at high frequencies where they exhibit undesirable characteristics such as high core loss. The primary goal of the research is to design and synthesize novel multi-layered nano-granular soft magnetic materials that can be used for high-frequency switched mode power converters. Properly characterizing the losses in the magnetic material from the context of it being used as a magnetic core is paramount in understanding the next steps needed to improve the material and the potential application in devices. Furthermore, to enable development of on-chip power converters, the synthesis methodology must be compatible with CMOS processes. In this thesis, several soft magnetic materials were synthesized using reactive sputtering. The synthesis process was thoroughly documented to ensure that the process can be easily repeated. A framework is also detailed that can be used for the thorough analysis of losses in a magnetic core and the framework is utilized to analyze the magnetic materials design. Two materials which are heavily emphasized in my work are Co-Zr-O and Ni-Fe-Zr-O. The basic characteristics of Co-Zr-O have been investigated in prior work and my work provides more detailed information on its performance under different operating and synthesis conditions. Ni-Fe-Zr-O is a newly designed granular material and its magnetic and loss characteristics are presented. After characterizing suitable materials, thick films were prepared as cores for inductors. Results of the performance of thick films are also presented.