Design of Modern Concrete Highway Bridges


Book Description

A text/reference book describing the design of many types of concrete highway bridges. Using examples, the text examines the development of all required loads and the associated bridge design specifications. Details working stress and load factor methods. Includes design charts. Illustrates the design of box beam, segmental, T-Beams, prestressed, postensured, and pier beams. Explanations can be applied directly to design problems.







Bridge Engineering


Book Description

Aimed at US audience - architects (113,000), civil engineers (228,000), and universities and colleges offering structural engineering programs. This work reflects the bridge design code changes and the newest ASCE [American Association of Civil Engineers] design methods. It uses SI units throughout for international usage.




Design of Highway Bridges


Book Description

Up-to-date coverage of bridge design and analysis revised to reflect the fifth edition of the AASHTO LRFD specifications Design of Highway Bridges, Third Edition offers detailed coverage of engineering basics for the design of short- and medium-span bridges. Revised to conform with the latest fifth edition of the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications, it is an excellent engineering resource for both professionals and students. This updated edition has been reorganized throughout, spreading the material into twenty shorter, more focused chapters that make information even easier to find and navigate. It also features: Expanded coverage of computer modeling, calibration of service limit states, rigid method system analysis, and concrete shear Information on key bridge types, selection principles, and aesthetic issues Dozens of worked problems that allow techniques to be applied to real-world problems and design specifications A new color insert of bridge photographs, including examples of historical and aesthetic significance New coverage of the "green" aspects of recycled steel Selected references for further study From gaining a quick familiarity with the AASHTO LRFD specifications to seeking broader guidance on highway bridge design Design of Highway Bridges is the one-stop, ready reference that puts information at your fingertips, while also serving as an excellent study guide and reference for the U.S. Professional Engineering Examination.




Design of Reinforced Masonry Structures


Book Description

The Definitive Guide to Designing Reinforced Masonry Structures Fully updated to the 2009 International Building Code (2009 IBC) and the 2008 Masonry Standards Joint Committee (MSJC-08), Design of Reinforced Masonry Structures, second edition, presents the latest methods for designing strong, safe, and economical structures with reinforced masonry. The book is packed with more than 425 illustrations and a wealth of new, detailed examples. This state-of-the-art guide features strength design philosophy for reinforced masonry structures based on ASCE 7-05 design loads for wind and seismic design. Written by an internationally acclaimed author, this essential professional tool takes you step-by-step through the art, science, and engineering of reinforced masonry structures. COVERAGE INCLUDES: Masonry units and their applications Materials of masonry construction Flexural analysis and design Columns Walls under gravity and transverse loads Shear walls Retaining and subterranean walls General design and construction considerations Anchorage to masonry Design aids and tables




Highway Bridge Superstructure Engineering


Book Description

A How-To Guide for Bridge Engineers and Designers Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis provides a detailed discussion of traditional structural design perspectives, and serves as a state-of-the-art resource on the latest design and analysis of highway bridge superstructures. This book is applicable to highway bridges of all construction and material types, and is based on the load and resistance factor design (LRFD) philosophy. It discusses the theory of probability (with an explanation leading to the calibration process and reliability), and includes fully solved design examples of steel, reinforced and prestressed concrete bridge superstructures. It also contains step-by-step calculations for determining the distribution factors for several different types of bridge superstructures (which form the basis of load and resistance design specifications) and can be found in the AASHTO LRFD Bridge Design Specifications. Fully Realize the Basis and Significance of LRFD Specifications Divided into six chapters, this instructive text: Introduces bridge engineering as a discipline of structural design Describes numerous types of highway bridge superstructures systems Presents a detailed discussion of various types of loads that act on bridge superstructures and substructures Discusses the methods of analyses of highway bridge superstructures Includes a detailed discussion of reinforced and prestressed concrete bridges, and slab-steel girder bridges Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis can be used for teaching highway bridge design courses to undergraduate- and graduate-level classes, and as an excellent resource for practicing engineers.




Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges


Book Description

In recent years, bridge engineers and researchers are increasingly turning to the finite element method for the design of Steel and Steel-Concrete Composite Bridges. However, the complexity of the method has made the transition slow. Based on twenty years of experience, Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges provides structural engineers and researchers with detailed modeling techniques for creating robust design models. The book's seven chapters begin with an overview of the various forms of modern steel and steel–concrete composite bridges as well as current design codes. This is followed by self-contained chapters concerning: nonlinear material behavior of the bridge components, applied loads and stability of steel and steel–concrete composite bridges, and design of steel and steel–concrete composite bridge components. - Constitutive models for construction materials including material non-linearity and geometric non-linearity - The mechanical approach including problem setup, strain energy, external energy and potential energy), mathematics behind the method - Commonly available finite elements codes for the design of steel bridges - Explains how the design information from Finite Element Analysis is incorporated into Building information models to obtain quantity information, cost analysis




Theory and Design of Bridges


Book Description

Indeed, this essential working reference for practicing civil engineers uniquely reflects today's gradual transition from allowable stress design to Load and Resistance Factor Design by presenting LRFD specifications - developed from research requested by AASH-TO and initiated by the NCHRP - which spell out new provisions in areas ranging from load models and load factors to bridge substructure elements and foundations.




Computational Analysis and Design of Bridge Structures


Book Description

Gain Confidence in Modeling Techniques Used for Complicated Bridge StructuresBridge structures vary considerably in form, size, complexity, and importance. The methods for their computational analysis and design range from approximate to refined analyses, and rapidly improving computer technology has made the more refined and complex methods of ana




Steel-concrete Composite Bridges


Book Description

"Steel-concrete composite bridges shows how to choose the bridge form and design element sizes to enable the production of accurate drawings and also highlights a wide and full range of examples of the design and construction of this bridge type."--Jacket.