Design of Nonplanar Microstrip Antennas and Transmission Lines


Book Description

A one-stop reference to the design and analysis of nonplanar microstrip structures. Owing to their conformal capability, nonplanar microstrip antennas and transmission lines have been intensely investigated over the past decade. Yet most of the accumulated research has been too scattered across the literature to be useful to scientists and engineers working on these curved structures. Now, antenna expert Kin-Lu Wong compiles and organizes the latest research results and other cutting-edge developments into an extensive survey of the characteristics of microstrip antennas mounted on canonical nonplanar surfaces. Demonstrating a variety of theoretical techniques and deducing the general characteristics of nonplanar microstrip antennas from calculated results, Wong thoroughly addresses the problems of cylindrical, spherical, and conical structures and gives readers powerful design and optimization tools. Up-to-date topics range from specific applications of spherical and conical microstrip arrays to the curvature effects on the analysis of cylindrical microstrip lines and coplanar waveguides. With 256 illustrations and an exhaustive list of references, Design of Nonplanar Microstrip Antennas and Transmission Lines is an indispensable guide for antenna designers in wireless and personal communications and in radar systems, and an invaluable reference for researchers and students interested in this important technology.




Printed Antennas for 5G Networks


Book Description

The book provides a comprehensive overview of antennas for 5G technology, such as MIMO, multiband antennas, Magneto-Electric Dipole Antenna and PIFA Antenna for 5G networks, phased array antennas for 5G access, beam-forming and beam-steering issues, 5G antennas for specific applications (smartphone, cognitive radio) and advance antenna concept and materials for 5G. The book also covers ooptimizations methods for passive and active devices in mm-Wave 5G networks. It explores topics which influence the design and characterization of antennas such as data rates, high isolation, pattern and spatial diversity, making 5G antennas more suitable for a multipath environment. The book represents a learning tool for researchers in the field, and enables engineers, designers and manufacturers to identify key design challenges of antennas for 5G networks, and characterize novel antennas for 5G networks.




Advances in Power Electronics and Instrumentation Engineering


Book Description

This book constitutes the refereed proceedings of the Second International Conference on Advances in Power Electronics and Instrumentation Engineering, PEIE 2011, held at Nagpur, India, in April 2011. The 9 revised full papers presented together with 4 short papers and 7 poster papers were carefully reviewed and selected from numerous submissions. The papers address current issues in the field of power electronics, communication engineering, instrumentation engineering, digital electronics, electrical power engineering, electrical machines, information technology, control systems, and the like.




Smart Antennas


Book Description

A valuable addition to the Wiley Series in Microwave and Optical Engineering Today's modern wireless mobile communications depend on adaptive "smart" antennas to provide maximum range and clarity. With the recent explosive growth of wireless applications, smart antenna technology has achieved widespread commercial and military applications. The only book available on the topic of adaptive antennas using digital technology, this text reflects the latest developments in smart antenna technology and offers timely information on fundamentals, as well as new adaptive techniques developed by the authors. Coupling electromagnetic aspects of antenna design with signal processing techniques designed to promote accurate and efficient information exchange, the text presents various mechanisms for characterizing signal-path loss associated with signal propagation, particularly for mobile wireless communications systems based on such techniques as joint space-frequency adaptive processing. In clear, accessible language, the authors: * explain the difference between adaptive antennas and adaptive signal processing * Illustrate the procedures for adaptive processing using directive elements in a conformal array * clarify multistage analysis procedure which combines electromagnetic analysis with signal processing * present a survey of the various models for characterizing radio wave propagation in urban and rural environments * describe a method wherein it is possible to identify and eliminate multipath without spatial diversity * optimize the location of base stations in a complex environment The text is an excellent resource for researchers and engineers working in electromagnetics and signal processing who deal with performance improvement of adaptive techniques, as well as those who are concerned with the characterization of propagation channels and applications of airborne phased arrays.




Wavelets in Electromagnetics and Device Modeling


Book Description

Thema des Buches ist die Elementarwellen- (Wavelet-) -Theorie (Zeit-Frequenz-Analyse), ein Grenzgebiet zwischen Mathematik und Ingenieurwissenschaften. - viele Anwendungen in der Elektronik, darunter Antennentheorie und drahtlose Kommunikation - erstes Buch, das die Wavelet-Theorie auf elektromagnetische Phänomene und auf die Modellierung von Halbleiterbauelementen anwendet




Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures


Book Description

A one-stop reference to the major techniques for analyzing microwave planar transmission line structures The last two decades have seen important progress in the development of methods for the analysis of microwave and millimeter-wave passive structures, which contributed greatly to microwave integrated circuit design while also stimulating the development of new planar transmission lines. This timely and authoritative work introduces microwave engineers to the most commonly used techniques for analyzing microwave planar transmission line structures. Designed to be easily accessible to readers with only a fundamental background in electromagnetic theory, the book provides clear explanations of the theory and applications of Green's function, the conformal-mapping method, spectral domain methods, variational methods, and the mode-matching methods. Coverage for each method is self-contained and supplemented with problems and solutions as well as useful figures. In addition to providing detailed formulations of the methods under discussion, this highly practical book also demonstrates how to apply the principles of electromagnetic theory to the analysis of microwave boundary value problems, customize methods for specific needs, and develop new techniques. Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures is an excellent working resource for anyone involved in the design and engineering of RF, microwave, and millimeter-wave integrated circuits.




Silica Optical Fiber Technology for Devices and Components


Book Description

From basic physics to new products, Silica Optical Fiber Technology for Device and Components examines all aspects of specialty optical fibers. Moreover, the inclusion of the latest international standards governing optical fibers enables you to move from research to fabrication to commercialization. • Reviews all the latest specialty optical fiber technologies, including those developed for high capacity WDM applications; broadband fiber amplifiers; fiber filleters based on periodic coupling; fiber branching devices; and fiber terminations • Discusses key differences among single mode fibers, multimode fibers for high speed Ethernet LAN, and dispersion compensating fibers for long-haul applications • Compares the most recently developed conventional optical fibers with the latest photonic crystal fibers still in development A self-contained, menu-driven software program is included for optical fiber design, simulating waveguide structures for most of the fibers discussed in the book.




Phased Array Antennas


Book Description

An in-depth treatment of array phenomena and all aspects of phased array analysis and design Phased Array Antennas, Second Edition is a comprehensive reference on the vastly evolving field of array antennas. The Second Edition continues to provide an in-depth evaluation of array phenomena with a new emphasis on developments that have occurred in the field over the past decade. The book offers the same detailed coverage of all practical and theoretical aspects of phased arrays as the first edition, but it now includes: New chapters on array-fed reflector antennas; connected arrays; and reflect arrays and retrodirective arrays Brand-new coverage of artificial magnetic conductors, and Bode matching limitations A clear explanation of the common misunderstanding of scan element pattern measurement, along with appropriate equations In-depth coverage of finite array Gibbsian models, photonic feeding and time delay, waveguide simulators, and beam orthogonality The book is complemented with a multitude of original curves and tables that illustrate how particular behaviors were derived from the author's hundreds of programs developed over the past forty years. Additionally, numerous computer design algorithms and numerical tips are included throughout the book to help aid in readers' comprehension. Phased Array Antennas, Second Edition is an ideal resource for antenna design engineers, radar engineers, PCS engineers, and communications engineers, or any professional who works to develop radar and telecommunications systems. It also serves as a valuable textbook for courses in phased array design and theory at the upper-undergraduate and graduate levels.




Compact Multifunctional Antennas for Wireless Systems


Book Description

Offers an up-to-date description of modern multifunctional antenna systems and microwave components Compact multifunctional antennas are of great interest in the field of antennas and wireless communication systems, but there are few, if any, books available that fully explore the multifunctional concept. Divided into six chapters, Compact Multifunctional Antennas for Wireless Systems encompasses both the active and passive multifunctional antennas and components for microwave systems. It provides a systematic, valuable reference for antenna/microwave researchers and designers. Beginning with such novel passive components as antenna filters, antenna packaging covers, and balun filters, the book discusses various miniaturization techniques for the multifunctional antenna systems. In addition to amplifying and oscillating antennas, the book also covers design considerations for frequency- and pattern-reconfigurable antennas. The last chapter is dedicated to the field of solar cell integrated antennas. Inside, readers will find comprehensive chapters on: Compact Multifunctional Antennas in Microwave Wireless Systems Multifunctional Passive Integrated Antennas and Components Reconfigurable Antennas Receiving Amplifying Antennas Oscillating Antennas Solar cell integrated Antennas Aimed at professional engineers and researchers designing compact antennas for wireless applications, Compact Multifunctional Antennas for Wireless Systems will prove to be an invaluable tool.




Diode Lasers and Photonic Integrated Circuits


Book Description

Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain.