Design of Rotating Electrical Machines


Book Description

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.




Design of Rotating Electrical Machines


Book Description

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This book enables you to design rotating electrical machines with its detailed step-by-step approach to machine design and thorough treatment of all existing and emerging technologies in this field. Senior electrical engineering students and postgraduates, as well as machine designers, will find this book invaluable. In depth, it presents the following: Machine type definitions; different synchronous, asynchronous, DC, and doubly salient reluctance machines. An analysis of types of construction; external pole, internal pole, and radial flux machines. The properties of rotating electrical machines, including the insulation and heat removal options. Responding to the need for an up-to-date reference on electrical machine design, this book includes exercises with methods for tackling, and solutions to, real design problems. A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Classroom tested material and numerous graphs are features that further make this book an excellent manual and reference to the topic.




Design of Rotating Electrical Machines


Book Description

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.




Electrical Insulation for Rotating Machines


Book Description

A fully expanded new edition documenting the significant improvements that have been made to the tests and monitors of electrical insulation systems Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair, Second Edition covers all aspects in the design, deterioration, testing, and repair of the electrical insulation used in motors and generators of all ratings greater than fractional horsepower size. It discusses both rotor and stator windings; gives a historical overview of machine insulation design; and describes the materials and manufacturing methods of the rotor and stator winding insulation systems in current use (while covering systems made over fifty years ago). It covers how to select the insulation systems for use in new machines, and explains over thirty different rotor and stator winding failure processes, including the methods to repair, or least slow down, each process. Finally, it reviews the theoretical basis, practical application, and interpretation of forty different tests and monitors that are used to assess winding insulation condition, thereby helping machine users avoid unnecessary machine failures and reduce maintenance costs. Electrical Insulation for Rotating Machines: Documents the large array of machine electrical failure mechanisms, repair methods, and test techniques that are currently available Educates owners of machines as well as repair shops on the different failure processes and shows them how to fix or otherwise ameliorate them Offers chapters on testing, monitoring, and maintenance strategies that assist in educating machine users and repair shops on the tests needed for specific situations and how to minimize motor and generator maintenance costs Captures the state of both the present and past “art” in rotating machine insulation system design and manufacture, which helps designers learn from the knowledge acquired by previous generations An ideal read for researchers, developers, and manufacturers of electrical insulating materials for machines, Electrical Insulation for Rotating Machines will also benefit designers of motors and generators who must select and apply electrical insulation in machines.




Electrical Steels for Rotating Machines


Book Description

Written in lucid prose, this text provides students of electrical engineering and practicing electrical design engineers with the properties of electrical steels. Beckley (Cardiff U., UK, consultant to Cogent Power), who has published extensively on the subject, defines the principles behind the actions of electrical steels, their properties, and the history of their development. He then describes manufacturing methods, range of materials, coatings, insulation, effects of punching and core building, high-frequency applications, and testing, among other topics. Annotation copyrighted by Book News, Inc., Portland, OR




Design and Testing of Electrical Machines


Book Description

The basic theory, principle of operation and characteristics of transformers, three-phase induction motors, single-phase induction motors, synchronous machines and dc machines are dealt with in Appendices to provide the background for the design of these machines. The initial chapters of the book are devoted to basic parameters of design of electrical apparatus, characteristics of magnetic, electric and insulating materials, construction of electrical machines, and basic design requirements of magnetic and electrical circuits of machines. Detailed procedures for designing transformers, three-phase induction motors, single-phase induction motors, synchronous machines and dc machines are explained in a simple and logical way. Several sample designs have been wroked out in detail. Methods of carrying out various tests and maintaining test records are discussed in detail. The use of computers in designing electrical machines has been illustrated. An exclusive chapter on special machines explains the basic theory and applications of stepper motors, rotating phase converters, pole amplitude modulated (PAM) motors, reluctance motors and energy efficient motors. This book is intended for degree and diploma students of electrical engineering and professional examinations of the Institution of Engineers (India). It will be useful for electrical engineers in industry engaged in design, manufacture and testing of electrical machines.




Mathematical Models for the Design of Electrical Machines


Book Description

This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.




Dynamics of Rotating Machines


Book Description

Enables engineers to understand the dynamics of rotating machines, from basic explanations to detailed numerical models and analysis.




Introduction to AC Machine Design


Book Description

The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author’s notes, as well as after years of classroom instruction, Introduction to AC Machine Design: Brings to light more advanced principles of machine design—not just the basic principles of AC and DC machine behavior Introduces electrical machine design to neophytes while also being a resource for experienced designers Fully examines AC machine design, beginning with basic electromagnetic principles Covers the many facets of the induction machine design Introduction to AC Machine Design is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.




Mechanical Design of Electric Motors


Book Description

Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well